
Support Vector Machines and Kernels: A Tutorial

Juan José Burred

Audionamix

February 17, 2012

The problem

Separate these two point classes:

Goal of SVM: find the separation line between two linearly
separable classes that ensures the maximum separation margin.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 2 / 25

The problem

Separate these two point classes:

Goal of SVM: find the separation line between two linearly
separable classes that ensures the maximum separation margin.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 2 / 25

The problem

Separate these two point classes:

Goal of SVM: find the separation line between two linearly
separable classes that ensures the maximum separation margin.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 2 / 25

The problem

Separate these two point classes:

MAXIMUM MARGIN

Goal of SVM: find the separation line between two linearly
separable classes that ensures the maximum separation margin.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 2 / 25

Terminology and formalization

Machine learning slang: we want to train a classifier (learn a
decision rule to classify a new incoming vector) from a training
database of feature vectors.

The training database is labeled (supervised learning):

2 labels: yi ∈ {−1, 1}
Training database: D = {(xi , yi)|xi ∈ RN}

Decision function: f (xi) = yi

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 3 / 25

Expression of decision boundary
in N dimensions

Separating hyperplane: P = {x |w(x − b) = 0}
Alternatively: P = {x |wx − b = 0}, where:

w is a vector normal to the plane
b is a vector pointing from the origin to the plane in the direction of w
b = ‖b‖‖w‖ is a bias parameter proportional to the distance from the
plane to the origin
The distance from the plane to the origin is b

‖w‖

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 4 / 25

Image: http://mathworld.wolfram.com/ (left), https://en.wikipedia.org/ (right)

A closer look at the decision regions

We want to select the
hyperplane parameters w
and b that maximize the
separation margin.
No feature vectors inside
the margin.
The margin boundaries are
given by xw − b = ±k for
some k.
However, there are infinite
solutions for different
couples of w and b.

To avoid that, we scale w and b so that the margin boundaries are
xw − b = ±1. This is called the canonical hyperplane.
This is equivalent to imposing the constraint yi (xiw − b) ≥ 1 on all
training samples xi .

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 5 / 25

Image: http://en.wikipedia.org/wiki/Support vector machine

Optimization problem

With the canonical hyperplane, the width
of the maximum margin is 2

‖w‖
To maximize the margin, we need to
minimize ‖w‖.
However, there is a square root involved

(‖w‖ =
√
w2
1 + w2

2 + . . .), which makes

the optimization difficult.
Instead, we minimize 1

2‖w‖
2

This is a Quadratic Programming (QP)
problem
Global minimum guaranteed.
The 1

2 factor is for convenience (see later)

SVM optimization

Minimize J(w) = 1
2‖w‖

2

subject to yi (xiw − b) ≥ 1 for all i .

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 6 / 25

Image: http://en.wikipedia.org/wiki/Support vector machine

How do we solve this?

SVM optimization

Minimize J(w) = 1
2‖w‖

2 subject to yi (xiw − b) ≥ 1 for all i .

Can we use Lagrange multipliers?

Reminder:

Optimization without constraints: set ∇θJ(θ) = 0 and solve.
Optimization with i equality constraints: Lagrange multipliers.

Optimize J(θ) subject to g(θ) = C .
First, build Lagrangian: L(θ) = J(θ) + λ(g(θ)− C)
Then, set ∇θ,λL(θ) = 0 and solve.
Multiple constraints: L(θ) = J(θ) +

∑
i λi (gi (θ)− Ci)

But here, we have an inequality constraint! (yi (xiw − b) ≥ 1)

We cannot directly use Lagrange multipliers.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 7 / 25

Generalized Lagrangian

However, it is possible to use a Lagrange-like optimization with inequalities
if some conditions are met.
These are called the Karush-Kuhn-Tucker (KKT) conditions.

Generalized Lagrangian

Optimize J(θ) subject to gi (θ) = 0 and hi (θ) ≤ 0
L(θ) = J(θ) +

∑
i λigi (θ) +

∑
j αjhj(θ)

There exists an optimal solution to the above problem if the following
conditions are met:

Karush-Kuhn-Tucker conditions
1 Primal feasibility: gi (θ) = 0 ∀i , hi (θ) ≤ 0 ∀i
2 Dual feasibility: αj ≥ 0 ∀j
3 Complementary slackness: αjhj(θ) = 0

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 8 / 25

Primal SVM problem

Let’s recast our problem:

Minimize J(w) = 1
2‖w‖

2 subject to yi (xiw − b) ≥ 1 for all i .

as a generalized Lagrangian:

L(θ) = J(θ) +
∑

i λigi (θ) +
∑

j αjhj(θ)

In our case we have:

J(θ) = 1
2‖w‖

2

λi = 0 (no equality constraints)
hi (θ) = −[yi (xiw − b)− 1]

We get the so-called Lagrangian primal problem for SVM:

Primal SVM problem

Minimize L(w , b,α) = 1
2‖w‖

2 −
∑

i αi [yi (xiw − b)− 1]
subject to the KKT conditions.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 9 / 25

Dual SVM problem

Let’s try to solve the primal problem

L(w , b,α) = 1
2‖w‖

2 −
∑

i αi [yi (xiw − b)− 1]

Setting ∇wL(w , b,α) = 0, we get w =
∑

i αiyixi
Setting ∇bL(w , b,α) = 0, we get

∑
i αiyi = 0

Substituting back into the primal equation we get a simplified
problem definition:

Dual SVM problem

Minimize L(α) =
∑

i αi − 1
2

∑
i

∑
j αiαjyiyjxixj

subject to the KKT conditions.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 10 / 25

Primal vs dual SVM problems

Primal SVM problem

L(w , b,α) =
1
2‖w‖

2 −
∑

i αi [yi (xiw − b)− 1]

Dual SVM problem

L(α) =∑
i αi − 1

2

∑
i

∑
j αiαjyiyjxixj

Depends on 3 parameters
(w , b, α)
Difficult to optimize
(saddle point)

Depends on dot products
between data and a model
parameter: wxi .

Only depends on 1 parameter
(α)
Easier to optimize
(global minimum)

Depends only on dot products
between pairs of training data
points xixj (important later!)

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 11 / 25

SVM solution

We solve the Dual SVM problem via QP, obtaining one Lagrange
multiplier αi for each training vector xi
Remember that w =

∑
i αiyixi . We use this to obtain parameter w from

the multipliers.
Remember also the definition of the separating hyperplane: wx − b = 0
Thus, for a trained w we have the following decision function for an
incoming unlabeled vector x :

f (x) =

{
1 if wx − b ≥ 0
−1 if wx − b < 0

= sgn(wx − b)

We can finally substitute w =
∑

i αiyixi to see that the solution only
depends on the multipliers:

SVM decision function

f (x) = sgn(
∑

i αiyixxi − b)

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 12 / 25

Support vectors

Remember the 3rd KKT condition? αihi (θ) = 0 ∀i
In our case, this means: −αi [yi (xiw − b)− 1] = 0
For this to hold, either:

αi = 0 (the training vector does not affect the decision), or
yi (xiw − b) = 1 (the training vector lies on one of the margin boundaries)

In other words: only the training
vectors lying on the margin
boundaries affect the decision!
They are called support vectors.
After training, all the other vectors
can be discarded. The model is
defined only by the support
vectors.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 13 / 25

Image: http://en.wikipedia.org/wiki/Support vector machine

Are we done?

SVM decision function

f (x) = sgn(
∑

i αiyixxi − b)

There is still one little detail missing: obtaining b!
We can rely on the support vectors. For one of them (xn), we can write
the following (S is the set of support vector indices):

yn

(∑
m∈S

αmymxnxm − b

)
= 1

Multiplying both sides by yn (y2n = 1):

b =
∑
m∈S

αmymxnxm − yn

Actually, you get more numerically stable results averaging across the Ns

support vectors:

b =
1

Ns

∑
n∈S

(∑
m∈S

αmymxnxm − yn

)

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 14 / 25

Linear SVM: Summary

For a labeled training database of two classes D = {(xi , yi)|xi ∈ RN}, the
SVM is trained by the following QP optimization:

SVM training

Minimize L(α) =
∑

i αi − 1
2

∑
i

∑
j αiαjyiyjxixj

subject to αi ≥ 0 and
∑

i αiyi = 0.

We obtain one Lagrange multiplier αi for each training vector xi . With
this, classification of an unlabeled vector x is performed as follows:

SVM classification

f (x) = sgn(
∑

m∈S αmymxxm − b)

where b is given by b = 1
Ns

∑
n∈S

(∑
m∈S αmymxnxm − yn

)
J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 15 / 25

Back to reality

Unfortunately, all we saw before only apply to linearly-separable cases
(unrealistic).
How do you classify this?

In practice, classes are almost never linearly separable.

Complex decision regions produce overfitting: perfect classification on
training database, but poorly generalizable.
Occam’s razor: keep your model simple! Allow some errors on training.
General performance on unknown data will be better.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 16 / 25

Back to reality

Unfortunately, all we saw before only apply to linearly-separable cases
(unrealistic).
How do you classify this?

In practice, classes are almost never linearly separable.
Complex decision regions produce overfitting: perfect classification on
training database, but poorly generalizable.

Occam’s razor: keep your model simple! Allow some errors on training.
General performance on unknown data will be better.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 16 / 25

Back to reality

Unfortunately, all we saw before only apply to linearly-separable cases
(unrealistic).
How do you classify this?

In practice, classes are almost never linearly separable.
Complex decision regions produce overfitting: perfect classification on
training database, but poorly generalizable.
Occam’s razor: keep your model simple! Allow some errors on training.
General performance on unknown data will be better.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 16 / 25

Even harder...

OK great, so how about... this!

Now we are very far from linear separability, even after allowing some
errors.

How can we solve this problem while keeping a simple decision region
(e.g. SVM)?

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 18 / 25

Cover’s theorem

The trick is to deform the feature space while keeping the linear boundary!

Cover’s theorem

A complex pattern classification problem cast in a high-dimensional space
non-linearly is more likely to be linearly separable than in a low-dimensional space.

Example of a nonlinear mapping ϕ : R2 → R3:

(x1, x2)→ (z1, z2, z3) = (x21 ,
√

2x1x2, x
2
2)T

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 19 / 25

Nonlinear mappings in practice

Directly applying such a mapping to a classification problem is tempting, but there
are two issues to be considered:

Curse of dimensionality
Usually, in machine learning we perform dimensionality reduction to avoid the
curse of dimensionality.
The curse of dimensionality means that adding new dimensions (adding new
features) increases the sparsity of the learning set, and thus increases the
difficulty of learning the true, underlying, general decision boundaries if the
training database is not well populated.
So, how can adding new dimensions be beneficial?
In fact, SVM is virtually immune to the curse of dimensionality since its
generalization is a function of the margin, regardless of the dimensionality!!

Computational complexity
Performing a mapping ϕ(xi) for each training feature can be extremely costly.
However, there is a way of performing the mapping without really performing
the mapping.
... wait.... what?

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 20 / 25

Explicit and implicit mapping
An example

Take the previous example of mapping from R2 to R3:
ϕ(x) = (x21 ,

√
2x1x2, x

2
2)T

Let’s transform a dot product in the original space (xy) into a dot product
in the mapped space:

ϕ(x)ϕ(y) = (x21 ,
√

2x1x2, x
2
2)T (y21 ,

√
2y1y2, y

2
2) =

= x21y
2
1 + 2x1x2y1y2 + x22y

2
2 = (x1y1 + x2y2)2 = (xy)2

If we define a function k(x , y) = (xy)2, we can write:

ϕ(x)ϕ(y) = k(x , y) = (xy)2

In other words, we have performed an implicit mapping of dot products
without explicitly mapping each vector with ϕ(x)!!
Function k(x , y) is called the kernel (implicit mapping) corresponding to
an explicit mapping ϕ(x).

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 21 / 25

The kernel trick

More generally: a given nonlinear mapping ϕ(x) has an associated kernel if
we can find a function k such that:

Kernel

k(x , y) = ϕ(x)ϕ(y)

A kernel k(x , y) defines an implicit mapping ϕ(x) if it fulfills Mercer’s
condition: its Gram matrix has to be positive semi-definite.

Gram matrix: Matrix of all possible dot products: Gi,j = k(xi , xj)
Positive semi-definite matrix: xTGx ≥ 0 ∀x

Therefore:

The kernel trick

If a learning algorithm depends only on dot products between feature fectors, it
can be easily projected into a high-dimensional nonlinear space by replacing the
dot products with the kernel.

And... remember what algorithm depended only on dot products between
features???

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 22 / 25

Kernel SVMs

Exactly the same than linear SVMs, but replacing the dot products xixj
with the kernels k(xi , xj):

Kernel SVM training

Minimize L(α) =
∑

i αi − 1
2

∑
i

∑
j αiαjyiyjk(xi , xj)

Kernel SVM classification

f (x) = sgn(
∑

m∈S αmymk(x , xm)− b)

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 23 / 25

Image: http://archive.is/Aon6l

Examples of valid kernels

Homogeneous polynomial: k(x , y) = (xy)d

Inhomogeneous polynomial: k(x , y) = (xy + φ)d

Radial Basis Function (RBF): k(x , y) = exp(−γ‖x − y‖2)

Sigmoidal: k(x , y) = tanh(β0xy + β1)

Inverse multiquadric: k(x , y) = 1√
‖x−y‖2+c2

And many others...

There are rules to construct complex and structured kernels (pdfs,
mixture models, temporal information...)

Kernels can be interpreted as nonlinear generalizations of similarity
measures.

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 24 / 25

Kernels in other algorithms

Kernel PCA: instead of computing the eigenvectors of the covariance
matrix, the eigenvectors of the kernel Gram matrix are computed.

Kernel NMF: The factorized matrix is a kernel Gram matrix. Useful
for feature extraction and classification.

ϕ(V) = WH → ϕ(V)Tϕ(V) = ϕ(V)TWH → G = YH

J.J. Burred (Audionamix) SVMs and Kernels February 17, 2012 25 / 25

Image: https://www.esat.kuleuven.be/sista/lssvmlab/tutorial/node25.html

	Introduction

