
Detailed derivation of
multiplicative update rules for NMF

Juan José Burred
March 2014
Paris, France

jjburred@jjburred.com

1 Introduction

The goal of Non-negative Matrix Factorization (NMF) is to decompose a matrix of non-negative (i.e., zero or positive)
elements into a product of two factor matrices, both of them containing also non-negative elements. It is common to
use the notation X for the input matrix (of size M ×N), W for the first factor matrix (sometimes called basis matrix
or feature matrix, of sizeM ×K) and H for the second factor matrix (sometimes called coefficient matrix or activation
matrix, of size K ×N). The resulting factorization is often approximate:

X ≈WH (1)

The problem can thus be formulated by defining a scalar error measure D (called loss or cost function) between the
input matrix X and the output product WH, and designing an algorithm to minimize it under the non-negativity
constraint:

{Ŵ, Ĥ} = argmin
W,H

D(X,WH) subject to wmk, hkn ≥ 0, (2)

where Ŵ and Ĥ are the obtained output factors, and wmk and hkn denote the entries of the factor matrices.
Most algorithms that tackle Eq. 2, including the multiplicative update rules described here, are based on gradient

descent. In traditional gradient descent, local minima of the cost function are searched by moving in the direction
of its gradient, i.e., its direction of steepest descent. At each iteration, we move along the independent variables of
the cost function so that, after a given step length (called learning rate), the cost function has maximally decreased.
Denoting the independent variables of the cost function collectively as the parameter vector θ, and using η for the
learning rate, we have the following general update rule for gradient descent:

θt+1 = θt − η∇D(θt), (3)

where t is the iteration counter, and ∇D(θ) is the gradient of the cost function, given by1

∇D(θ) =


∂D(θ)
∂θ1
∂D(θ)
∂θ2
...

∂D(θ)
∂θP

 (4)

To avoid the iteration indices, Eq. 3 is often written as

θ ← θ − η∇D(θ) (5)

In this basic form of the update rule, the learning rate η is constant, but it can change along iterations (ηt), or have
different values for each one of the parameters. In the latter case, we have a vector of learning rates η, and the above
update rule can be written in compact matrix form as

θ ← θ − η ◦ ∇D(θ), (6)

where ◦ denotes the Hadamard (element-by-element) product. In this document, compact matrix notation will be
favored, but one should keep in mind that the update rules happen always on an element-by-element basis, so the
above equation is equivalent to a collection of update rules

θp ← θp − ηp
∂D(θ)

∂θp
, (7)

1In this document, denominator-layout notation will be used. This means that we consider the gradient of a scalar function to be a
column vector.

2 Update rules based on the Euclidean distance 2

one for each individual parameter θp.
In the case of NMF, we have θ = {W,H}. Instead of jointly updating both matrices, the algorithms are much

simpler if they are updated in turns: in each iteration, first one matrix is updated assuming that the other matrix is
constant, and then the second. This scheme is called block-coordinate descent :

H ← H− ηH ◦ ∇HD(X,WH) (8)
W ← W − ηW ◦ ∇WD(X,WH) (9)

The task of deriving the update rules amounts, then, to compute the partial gradients ∇WD and ∇HD, and to choose
appropriate learning rates ηW and ηH. Now the gradients:

∇WD =


∂D
∂w11

∂D
∂w12

. . . ∂D
∂w1K

∂D
∂w21

∂D
∂w22

. . . ∂D
∂w2K

...
...

. . .
...

∂D
∂wM1

∂D
∂wM2

. . . ∂D
∂wMK

 ∇HD =


∂D
∂h11

∂D
∂h12

. . . ∂D
∂h1N

∂D
∂h21

∂D
∂h22

. . . ∂D
∂h2N

...
...

. . .
...

∂D
∂hK1

∂D
∂hK2

. . . ∂D
∂hKN

 (10)

and the learning rates ηW and ηH are full matrices of sizes M ×K and K ×N , respectively. The final form of the
update rules will thus depend on the chosen cost function D. This document will focus on three of the most popular
choices: the Euclidean distance, the Kullback-Leibler divergence and the Itakura-Saito divergence.

2 Update rules based on the Euclidean distance

Let’s start by computing the gradients ∇WD and ∇HD for the Euclidean distance. The familiar form of the Euclidean
distance between two vectors x and y of N elements is

dEUC(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xN − yN)2 =

√√√√ N∑
i=1

(xi − yi)2 (11)

Alternatively, we can consider the Euclidean norm:

‖x‖ =
√
x21 + x22 + . . .+ x2N =

√√√√ N∑
i=1

x2i (12)

and interpret Eq. 11 as the norm of the difference vector:

dEUC(x,y) = ‖x− y‖ (13)

For matrices, the equivalent of the Euclidean norm is the Frobenius norm, given by

‖X‖F =

√√√√ M∑
i=1

N∑
j=1

x2ij , (14)

and in analogy we can define an Euclidean-like distance between matrices, which is really the Frobenius norm of their
difference:

DEUC(X,Y) = ‖X−Y‖F =

√√√√ M∑
i=1

N∑
j=1

(xij − yij)2 (15)

To simplify the computation of the gradients, what is actually used in the context of NMF is the square of the
Frobenius norm. This gives finally the following cost function:

DEUC(X,WH) = ‖X−WH‖2F =
∑
m

∑
n

(xmn −WH|mn)2, (16)

where WH|mn denotes the mn-th element of the result of the matrix product WH. To compute the gradients of
this equation, we can proceed in two possible ways: we can either keep using compact matrix notation and resort to
matrix calculus, or we can look into element-by-element derivations. The two routes will be detailed here.

2 Update rules based on the Euclidean distance 3

Euclidean gradient computation using matrix calculus

We will start from one of the properties of the trace of the matrix. Recall that the trace is the sum of the elements on
the main diagonal of a square matrix. The property that will interest us here is the following:

tr(XTY) =

M∑
i=1

N∑
j=1

xijyij (17)

In other words, the trace of a product of matrices equals the sum of their element-by-element (Hadamard) products
(both matrices must have the same size). From this, it follows that the Frobenius norm (Eq. 14) can be rewritten as

‖X‖F =

√√√√ M∑
i=1

N∑
j=1

x2ij =
√
tr(XTX), (18)

and the Euclidean NMF cost function becomes:

DEUC(X,WH) = ‖X−WH‖2F = tr
[
(X−WH)T (X−WH)

]
. (19)

We can now use the addition property of the transpose, (X + Y)T = XT + YT , and its multiplication property,
(XY)T = YTXT , to expand this further as

DEUC(X,WH) = tr
[
(XT −HTWT)(X−WH)

]
= tr(XTX−XTWH−HTWTX+HTWTWH) (20)

For computing the gradient of this equation, we will make use of these further properties of the trace:

• Trace of a sum:
tr(A+B) = tr(A) + tr(B) (21)

• Cyclic permutation:
tr(ABC) = tr(CAB) = tr(BCA) (22)

• Gradient of traces of product with constant matrix A:

∇X tr(AX) = AT (23)
∇X tr(XTA) = A (24)
∇X tr(XTAX) = (A+AT)X (25)
∇X tr(XAXT) = X(AT +A) (26)

Let’s begin with the computation of ∇HD. Eq. 21 allows us to compute the gradient of Eq. 20 term by term. For
the first term, we immediately see that ∇H tr(XTX) = 0, since the term does not depend on H. For the second term,
we use Eq. 23 to obtain:

∇H tr(XTWH) = (XTW)T = WTX (27)

For the third term, we use Eq. 24 to obtain:

∇H tr(HTWTX) = WTX (28)

For the last term, we can set A = WTW and use Eq. 25:

∇H tr(HTWTWH) =
[
WTW + (WTW)T

]
H = 2WTWH (29)

Putting all the terms together with the appropriate signs of Eq. 20, we finally get

∇HDEUC(X,WH) = −2WTX+ 2WTWH (30)

For ∇WD, we proceed analogously. First, we also have ∇W tr(XTX) = 0. For the second term, we use the cyclic
permutation property and Eq. 23:

∇W tr(XTWH) = ∇W tr(HXTW) = (HXT)T = XHT (31)

2 Update rules based on the Euclidean distance 4

The third term gives, from a permutation of Eq.24:

∇W tr(HTWTX) = ∇W tr(XHTWT) = XHT (32)

For the last term, we permute twice, set A = HHT and use Eq. 26:

∇W tr(HTWTWH) = ∇W tr(WHHTWT) = W
[
(HHT)T +HHT

]
= 2WHHT (33)

And putting the terms together:

∇WDEUC(X,WH) = −2XHT + 2WHHT (34)

Euclidean gradient computation using elementwise derivations

Alternatively, we can compute the gradients using traditional element-wise derivatives. We will first use the definition
of matrix multiplication:

WH|mn =
∑
k

wmkhkn (35)

to expand the cost function of Eq.36 to:

DEUC(X,WH) =
∑
m

∑
n

(xmn −WH|mn)2 =
∑
m

∑
n

(xmn −
∑
k

wmkhkn)
2 (36)

We wish to obtain the matrix gradients of Eq. 10 element-by-element by computing the partial derivatives with
respect to particular elements at indices i and j. We will start with the gradient for W:

∂DEUC(X,WH)

∂wij
=

∂

∂wij

∑
m

∑
n

(xmn −
∑
k

wmkhkn)
2 (37)

Using the chain rule, we have

∂

∂wij

∑
m

∑
n

(xmn −
∑
k

wmkhkn)
2 = 2

∑
m

∑
n

[
(xmn −

∑
k

wmkhkn)
∂

∂wij
(xmn −

∑
k

wmkhkn)

]
(38)

Because ∂xmn/∂wij = 0, the derivative that needs to be computed is

∂

∂wij

∑
k

wmkhkn =
∂

∂wij
(wm1h1n + wm2h2n + . . .+ wmKhKn) (39)

From this expansion, we see that the derivative will only be non-zero if m = i, in which case its value will be hjn:

∂

∂wij

∑
k

wmkhkn =
∂

∂wij
WH|mn =

{
hjn if m = i
0 if m 6= i

(40)

This result allows us to simplify Eq. 38 by eliminating all zero terms, i.e., by eliminating the summation over m by
setting m = i, finally obtaining the derivative:

∂DEUC(X,WH)

∂wij
= 2

∑
n

[
(xin −

∑
k

wikhkn)(−hjn)

]
= −2

∑
n

xinhjn + 2
∑
n

∑
k

wikhknhjn (41)

To put this back into matrix form, we use the fact that ABT |ij =
∑
k aikbjk:

∂DEUC(X,WH)

∂wij
= −2XHT |ij + 2

∑
n

(WH|in)hjn = −2XHT |ij + 2WHHT |ij (42)

We have obtained the same gradient as before (Eq. 34). Let’s now derive wrt hij . Using the same logic, we now find:

∂

∂hij

∑
k

wmkhkn =
∂

∂hij
WH|mn =

{
wmi if n = j
0 if n 6= j

(43)

2 Update rules based on the Euclidean distance 5

and now the derivative is

∂DEUC(X,WH)

∂hij
= −2

∑
m

xmjwmi + 2
∑
m

∑
k

wmkhkjwmi = −2
∑
m

wmixmj + 2
∑
m

wmi
∑
k

wmkhkj (44)

and using ATB|ij =
∑
k akibjk:

∂DEUC(X,WH)

∂hij
= −2WTX|ij + 2

∑
m

wmiWH|mj = −2WTX|ij + 2WTWH|ij (45)

From additive to multiplicative update rules

Having obtained both gradients ∇HD (Eq. 30) and ∇WD (Eq. 34), we can now put them into Eqs. 9 and 8 to obtain
the block-coordinate gradient descent algorithm for Euclidean NMF:

H ← H+ ηH ◦ (WTX−WTWH) (46)
W ← W + ηW ◦ (XHT −WHHT) (47)

Note that the scalar 2 can be ignored, since we can consider that it is absorbed into the learning rates.
In conventional gradient descent, all the elements of the learning rates ηH and ηW are positive. Due to the

subtraction present in both update rules, this can produce negative elements, violating the non-negativity constraint.
To avoid this, Lee and Seung proposed in 2001 [3] to use data-adaptive learning rates that would make it impossible to
obtain negative elements. The trick is to define the learning rates so that any subtraction dissapears from the update
rule. For H, if we set:

ηH =
H

WTWH
(48)

(the fraction line is used here to denote element-by-element division) then the first update rule becomes:

H← H+
H

WTWH
◦ (WTX−WTWH) = H+H ◦ WTX

WTWH
−H ◦W

TWH

WTWH
= H ◦ WTX

WTWH
(49)

Analogously, for W we can set:

ηW =
W

WHHT
(50)

to turn the second update rule into:

W←W +
W

WHHT
◦ (XHT −WHHT) = W +W ◦ XHT

WHHT
−W ◦WHHT

WHHT
= W ◦ XHT

WHHT
(51)

The additive update rules have thus been transformed into multiplicative update rules, which cannot generate negative
elements since all values are positive and only multiplications and divisions are involved at each update:

H← H ◦ WTX

WTWH
(52)

W←W ◦ XHT

WHHT
(53)

Choosing the adaptive learning rates in the form of Eqs. 48 and 50 to avoid subtraction is equivalent to deriving a
multiplicative learning rule of the generic form

θ ← θ ◦
∇−

θD(θ)

∇+
θD(θ)

(54)

where we put all the negative terms of the gradient in the numerator (∇−
θD(θ)) and all the positive terms in the

denominator (∇+
θD(θ)).

3 Update rules based on the Kullback-Leibler divergence 6

3 Update rules based on the Kullback-Leibler divergence

Another commonly used cost function for NMF is based on the Kullback-Leibler (KL) divergence, whose original
definition as a measure of similarity between (discrete) probability distributions p and q is:

DKL(p, q) =
∑
i

p(i) log
p(i)

q(i)
(55)

In the context of NMF, what is actually used is the generalized KL divergence [3]:

DKL(p, q) =
∑
i

[
p(i) log

p(i)

q(i)
− p(i) + q(i)

]
(56)

In matrix form, and adapted to our NMF problem, this becomes:

DKL(X,WH) =
∑
m

∑
n

(
xmn log

xmn
WH|mn

− xmn +WH|mn
)

(57)

We first compute its derivative wrt wij :

∂DKL(X,WH)

∂wij
=
∑
m

∑
n

∂

∂wij

(
xmn log

xmn
WH|mn

)
+
∑
m

∑
n

∂

∂wij
WH|mn (58)

We already encountered the derivative of the last term during the derivation of the Euclidean update rules (Eq. 40),
so the last term becomes ∑

m

∑
n

∂

∂wij
WH|mn =

∑
n

hjn (59)

For the first term, we can use log(a/b) = log(a)− log(b):

∂

∂wij

(
xmn log

xmn
WH|mn

)
= xmn

∂

∂wij
(log xmn − logWH|mn) = −xmn

∂

∂wij
logWH|mn (60)

Using the chain rule for logarithms of functions:

∂

∂x
log(f(x)) =

∂f(x)/∂x

f(x)
(61)

we obtain
− xmn

∂

∂wij
logWH|mn = − xmn

WH|mn
∂

∂wij
WH|mn (62)

Using again Eq. 40 we finally get

∂DKL(X,WH)

∂wij
= −

∑
n

(
xinhjn
WH|in

)
+
∑
n

hjn (63)

To put this into compact matrix notation, we can imagine a matrix A whose elements are aij = xij/WH|ij , so that
we can write the first term as a matrix product:

−
∑
n

(
xinhjn
WH|in

)
= −

∑
n

ainhjn = −AHT |ij (64)

Since A has been constructed on an element-by-element basis, we can write

A =
X

WH
(65)

We can finally put the remaining term
∑
n hjn into matrix form by observing that it builds a matrix whose elements

are the sum of the current row of H or, alternatively, the current column of HT . This column-summing result can be
obtained by a matrix multiplication with a matrix of ones:∑

n

hjn = 1HT |ij (66)

4 Update rules based on the Itakura-Saito divergence 7

Putting all this together we get the matrix gradient:

∇WDKL(X,WH) = − X

WH
HT + 1HT (67)

Proceeding likewise for hij , we get

∂DKL(X,WH)

∂hij
= −

∑
m

xmjwmi
WH|mj

+
∑
m

wmi = −WTA|ij +WT1|ij (68)

and thus:

∇HDKL(X,WH) = −WT X

WH
+WT1 (69)

Setting the adaptive learning rates of Eqs. 46 and 47 to avoid subtractions, or alternatively using the heuristic of Eq.
54, we obtain the following update rules for NMF based on the Kullback-Leibler divergence:

H← H ◦
WT X

WH

WT1
(70)

W←W ◦
X

WHHT

1HT
(71)

4 Update rules based on the Itakura-Saito divergence

The Itakura-Saito divergence was originally proposed in 1968 [2] as a measure of the similarity between two spectra p
and q:

DIS(p, q) =
∑
i

[
p(i)

q(i)
− log

p(i)

q(i)
− 1

]
(72)

It has been adopted as a cost function for NMF, especially for audio applications [1]. The cost function becomes:

DIS(X,WH) =
∑
m

∑
n

(
xmn

WH|mn
− log

xmn
WH|mn

− 1

)
(73)

Deriving wrt wij :
∂DIS(X,WH)

∂wij
=
∑
m

∑
n

xmn
∂

∂wij

1

WH|mn
+
∑
m

∑
n

∂

∂wij
logWH|mn (74)

We’ve already encountered the derivative of the second term in Eq. 62:∑
m

∑
n

∂

∂wij
logWH|mn =

∑
n

hjn
WH|in

(75)

For the first term, we use the reciprocal rule of derivation:

∂

∂x

1

f(x)
=
−∂f(x)/∂x
f(x)2

(76)

to get
∂

∂wij

1

WH|mn
=

−1
(WH|mn)2

∂

∂wij
WH|mn (77)

and again using Eq. 40 and putting the previous equations together:

∂DIS(X,WH)

∂wij
= −

∑
n

xinhjn
(WH|in)2

+
∑
n

hjn
WH|in

(78)

References 8

Introducing the matrices aij = xij/(WH|ij)2 and bij = 1/WH|ij this simplifies to

∂DIS(X,WH)

∂wij
= −

∑
n

ainhjn +
∑
n

binhjn = −AHT |ij +BHT |ij (79)

And in matrix form we have
A =

X

(WH)◦2
B =

1

WH
(80)

where ◦2 means element-wise power and 1 is a matrix of ones, thus getting the gradient

∇WDIS(X,WH) = − X

(WH)◦2
HT +

1

WH
HT (81)

Similarly, for hij we have

∂DIS(X,WH)

∂hij
= −

∑
m

xmjwmi
(WH|mj)2

+
∑
m

wmi
WH|mj

= −WTA|ij +WTB|ij (82)

and finally

∇HDIS(X,WH) = −WT X

(WH)◦2
+WT 1

WH
(83)

Using the same procedure as before, we get these multiplicative update rules:

H← H ◦
WT X

(WH)◦2

WT 1
WH

(84)

W←W ◦
X

(WH)◦2H
T

1
WHHT

(85)

References

[1] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative Matrix Factorization with the Itakura-Saito
Divergence. With Application to Music Analysis. Neural Computation, 21:793–830, 2009.

[2] F. Itakura and S. Saito. Analysis synthesis telephony based on the maximum likelihood method. In Proc. Inter-
national Congress on Acoustics, Los Alamitos, USA, 1968.

[3] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In Proc. Neural Information Processing
Systems (NIPS), Denver, USA, 2001.

	Introduction
	Update rules based on the Euclidean distance
	Update rules based on the Kullback-Leibler divergence
	Update rules based on the Itakura-Saito divergence

