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Motivation

® Source Separation for Music Information Retrieval

O  Goal: Facilitate feature extraction of complex signals

® The paradigms of Musical Source Separation (based on [Scheirer00])

O  Understanding without separation
O Multipitch estimation, music genre classification
O  “Glass ceiling” of traditional methods (MFCC, GMM) [Aucouturier&Pachet04]
o  Separation for understanding
O  First (partially) separate, then feature extraction
O  Source separation as a way to break the glass ceiling!
o  Separation without understanding
O©  BSS: Blind Source Separation (ICA, ISA, NMF)
o  Understanding for separation

O  Supervised source separation

[Scheirer00] E. D. Scheirer. Music-Listening Systems. PhD thesis, Massachusetts Institute of Technology, 2000.

[Aucouturier&Pachet04] ].-J. Aucouturier and F. Pachet. Improving Timbre Similarity: How High is the Sky? Journal of Negative Results in Speech
and Audio Sciences, | (1),2004.
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Musical Source Separation Tasks

® C(lassification according to the nature of the mixtures:

Difficulty +

Source position Mixing process Source/mixture ratio Noise Musical texture Harmony
e echoic (changing e monodic (multiple
. impulse response) I P e prpe—m—— I | voices)
e changing e echoic (static ® noisy e heterophonic

I e static I

impulse response)

e delayed

e instantaneous I

e overdetermined

e cven-determined

I e noiseless I

e homophonic /

homorhythmic

e polyphonic /
contrapuntal

e tonal
e atonal

e monodic (single

voice)

® C(Classification according to available a priori information:

+ A priori knowledge -
Difficulty +

Source position

Source model

Number of sources

Type of sources

Onset times

Pitch knowledge

I e unknown I

e statistical
model

e known mixing
matrix

® none

e statistical

independence

e unknown
e known

e unknown

e known

e sparsity

e advanced/trained
source models

Io unknown I I e none I

e known e pitch ranges
(score/MIDI e score/MIDI
available) available
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Modeling of Timbre

® Based on the Spectral Envelope and its dynamic evolution
® Requirements on the model

O  Generality

O  Ability to handle unknown, realistic signals.

O  Implemented by statistical learning from sample database.
©  Compactness

O  Together with generality, implies that the model has captured the essential
source characteristics.

O  [Implemented with spectral basis decomposition via Principal Component
Analysis (PCA).

O  Accuracy
O  The model must guide the grouping and unmixing of the partials.

©  Demanding requirement that is not always necessary in other MIR
application.

O  Realized by estimating the spectral envelope by Sinusoidal Modeling +
Spectral Interpolation.

® Details on design and evaluation: [Burred 06]

[Burred06] J.J. Burred, A. Robel and X. Rodet.An Accurate Timbre Model for Musical Instruments and its Application to
Classification. In Proc. Workshop on Learning the Semantics of Audio Signals (LSAS), Athens, Greece, December 2006.
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Representation stage (1)

® Basis decomposition of partial spectra

X =PY Data mazfix (partial v X
AP Transformation basis Projected coefficients
amplitudes)

® Application of PCA to spectral envelopes

O  Example: decomposition of a single violin note, with vibrato

Time coefficients
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Representation stage (2)

©  Partial Indexing
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O  Envelope Interpolation (preserves formants)
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O  Envelope Interpolation performs better according to all criteria
(compactness, accuracy, generality) and in classification tasks.
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Prototyping stage (1)

® For each instrument, each coefficient trajectory is
interpolated to the same relative time positions.

N Plano training
\ - trajectories

0
® FEach cloud of “synchronous” coefficients is Al
modeled as a D-dimensional Gaussian distribution. o

® This originates a prototype curve C; that can be
modeled as a D-dimensional, non-stationary
Gaussian Process with time-varying means and

. Piano prototype
covariances. NG

. curve

Ci GP (1), Bi() ik

® Projected back to time-frequency, the equivalent is
a prototype envelope &;:a unidimensional GP with
time- and frequency-variant mean and variance
surfaces. e

fir = PpAémU’ir + E{X} 108 . Piano prototype

 envelope

6'2'2fr = diag (PPAEBMEW(PpAé/Z)T) 5

_20\”‘.»_‘__....2

&~ GP (pilt. ), 07t /)

20
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Prototyping stage (2)

Mean prototype curves, first 3 PCA dimensions
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® Practical example

5 instruments: piano, clarinet,
trumpet, oboe, violin

423 sound samples, 2 octaves

All dynamic levels (forte,
mezzoforte, piano)

RWC database
Common PCA bases

Only mean curves represented

® Automatically generated timbre
space

y2,y3 projection

- Clarinet
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Prototyping stage (3)
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® Practical example (cont’d)

O  Projection back into time-
frequency domain.

O  The prototype envelopes will
serve as templates for the

grouping and separation of
partials.

® Examples of observed formants:

O  (Clarinet:

first formant, between 1500 Hz
and 1700 Hz. [Backus77]

O  Trumpet:

first formant, between 1200 Hz
and 1400 Hz. [Backus77]

©  Violin:
“bridge hill” around 2000 Hz.
[Fletcher98]

[Backus77]  ]. Backus. The Acoustical Foundations of Music. VV.WV.
Norton, 1977.
[Fletcher98] N.H. Fletcher and T. D. Rossing. The Physics of

Musical Instruments. Springer, 1998.
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Application to instrument classification

® (lassification of isolated-note
samples from musical instruments

o

By projecting each input sample as an
unknown coefficient trajectory in PCA
space and

Measuring a global distance between
the interpolated, unknown trajectory 14
and all prototype curves (C;, defined as
the average Euclidean distance between
their mean points:

1 Rmax D
Ry Z Z(ﬁrk - Mirk)2'

r=1 k:l

Experiment: 5 classes, 1098 files, 10-fold
cross-validation, 2 octaves (C4 to B5)

Comparison of Partial Indexing (PI) and
Envelope Interpolation (El):
20% improvement with El

Comparison with MFCCs: 34% better
with proposed representation method

Classification accuracy (%)

Averaged classification accuracy
(10-fold cross-validated)
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| | | | | | - | —©— cubic ElI
| == -MFCC
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no. dimensions

Maximum averaged classification accuracy and
standard deviation (STD) (10-fold cross-validated)

Representation | Accuracy STD
Pl 74,86 % 4+ 2.84%
Linear EI 94,86 % | £2.13%
Cubic EI 94,59 % 4+ 2.72%
MFCC 60,37 % 4+ 4.10%
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Monaural separation: overview

® One channel: the maximally MIXTURE
underdetermined situation i

Sinusoidal Modeling

Cwn )
A

o  Underlying idea: to use the obtained prototype
envelopes as time-frequency templates to i

guide the sinusoidal peak selection and ;
, . Onset detection
grouping for separation.
® Separation is only based on common-fate .
] ) Timb Track grouping
and good continuation cues of the o
modace
amplitudes library i
B /{ Timbre matching } Segllflezz:;tlon
%k No harmonicity or quasi-harmonicity required
% No a priori pitch information needed i i
58 N9 multl.pltch estimation stage negded o
2%k Itis possible to separate inharmonic sounds
2%k ltis possible to separate same-instrument i i
chords as single entities .
%k  Outputs instrument classification and LRyl
segmentation data i i
% No need for note-to-source clustering
SOURCES

® Trade-off for the above

[Burred&Sikora07] ].). Burred and T. Sikora. Monaural Source Separation from

% Onset separability constraint Musical Mixtures based on Time-Frequency Timbre Models.
In Proc. ISMIR, Vienna, Austria, September 2007.
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Track grouping

® |nharmonic sinusoidal analysis on the mixture

® Simple onset detection

O  Based on the number of new sinusoidal tracks at any given frame, weighted by
their mean frequency.

® Common-onset grouping of the tracks

O  Within a given frame tolerance from the detected onset.

® FEach track on each group can be

] on on off
of the following types: ooy L 1L
. Nonoverlapping (NOV) O i WGLLLECCCRLUE LU LU DA R L
2. Overlapping with track from 1600} sbstiution
previous onset (OV) 1400} tension

3. Overlapping with synchronous track 1200

(from the same onset)

Frequency (Hz)
S
S
S

SO0  ——————
1-NOV-Short 2-OV-Long

® TJo distinguish between types

I and 3: 600 - extension

O  Matching of individual tracks with 400l 1-NOV-Short

the models 2-NOV-Long

. . .. 200F | 1-NOV-

©  Unsufficient robustness in preliminary NOV-Long

tests (e L 1 | 1 1 1 1

. . ol . 0 5 10 15 20 25 30 35 40

O  Oirigin of onset separability constraint Time frames
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Timbre matching (1)

® Each common-onset group of nonoverlapping sinusoidal tracks 7VOV is
matched against each stored prototype envelope.

® To that end, the following timbre similarity measures have been formulated:

0  Group-wise global Euclidean distance to the mean surface M

Ry
ATV M) = S S Ay — Mi(fur)

©  Group-wise likelihood to the Gaussian Process with parameter vector 6; = (M;, V)

R
L(ToNovlei): H Hp(Atr|Mi(ftr)vVi(ftr))
te’];NOVrzl

Bad match: piano track group against
oboe prototype envelope

Good match: piano track group against
piano prototype envelope

Log. Amplitude (dB)

Log. Amplitude (dB)

200

3000 300~ _ 3000

2500
Time (frames) 400 1000 1500 2000 2500
500 Frequency (Hz)

100

200
_ 300 |
Time (frames) 400 500 1000

1500 2000
Frequency (Hz)
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Weighted likelihood

Timbre matching (2)

® To allow robustness against amplitude scalings and note lengths, the similarity
measures are redefined as optimization problems subject to two parameters:

O  Amplitude scaling parameter «
o  Time stretching parameter N ( A5 and fiy denote the amplitude and frequency
values for a track that has been stretched so that its last frame is V.)

AT Mig) = mN{ > S AY - M >|} O Weighted likelihood: w; = efit/ 7

teTNOV r=1 o f; is the track mean frequency
5 o R is the track length
Lw(,]—oNOV|9i) — Iél’E]lVX { H W H p (Ag + a|M@( t]?Y)v VZ( tjy)) }
O  Unweighted likelihood: w; =1

Exhaustive optimization surface (piano note)

Piano
Oboe
0.6 Clarinet
' Violin Amplitude scaling profile Time stretching profile
05 0.7 T w w T T T T T T T T
0.6 0.6
0.4
'§ 0.5 3 0.5
0.3 | E 0.4t E 0.4}
0.2 g :
0.2f 0.2f
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0.1 0.1F J
@ ]
5
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e\o Scaling parameter (o) Stretching parameter (N)

. 10
Scaling parameter (o) S 30
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Application to polyphonic instrument recognition

® Same model library:

O 5 classes (piano, clarinet, oboe, trumpet, violin)

® FEach experiment contains |0 mixtures of 2 to 4 instruments

® Comparison of the 3 optimization-based timbre similarity measures

O  Euclidean, Likelihood and Weighted Likelihood

® Comparison between consonant intervals and dissonant intervals

® Note-by-note accuracy, cross-validated

Detection accuracy (%) for simple mixtures of one note per instrument

Consonant (EXP 1) Dissonant (EXP 2)
Polyvphony 2 3 4 J Av. 2 3 4 Av.
Euclidean distance 63.14 34.71 40.23 16.03 73.81 69.79 12.33 61.98
Likelihood 66.48 | 53.57 | 51.95 | 57.33 79.81 57.95 56.40 64.59
Weighted likelihood 76.95 13.21 40.50 53.55 79.81 | 77.79 | 61.40 | 73.00

Detection accuracy (%) for mixtures of sequences containing several notes

Sequences (EXP 3)
~ Polyphony 2 3 1 Avwv.
Euclidean distance 64.66 50.64 57.65
Likelihood 63.68 | 56.40 | 60.04
Weighted likelihood 65.16 54.35 59.76

Juan José Burred.
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Track retrieval

® Goal: to retrieve the missing and overlapping parts of the sinusoidal tracks by
interpolating the selected prototype envelope

® 2 operations:

o  Extension:tracks (of types | and 3) shorter than the current note are extended
towards the onset (pre-extension) or towards the offset (post-extension), ensuring
amplitude smoothness.

O  Substitution: overlapping tracks (type 2) are retrieved from the model in their entirety
by linearly interpolationg the prototype envelope at the track’s frequency support.

®  Finally, the tracks are resynthesized by additive synthesis. Clarinet nonoverlapping tracks
-e—e—e- C(larinet extended parts

Oboe nonoverlapping tracks
Frequency support -e—e—e- Oboe extended parts
R O e ‘ | Oboe overlapping tracks (substitution)
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Evaluation of Mono Separation

® Experimental setups: (170 mixtures in total)

| Type | Name | Source content | Harmony | Instruments | Polyphony |

EXP 1 Individual notes Consonant Unknown 2,3,4

Basic EXP 2 Individual notes Dissonant Unknown 2,3,4
EXP 3 Sequence of notes Cons., Diss. | Unknown 2,3

EXP 3k | Sequence of notes Cons., Diss. | Known 2,3

EXP 4 One chord Consonant Unknown 2,3

Extonded EXP 5 One cluster Dissonant Unknown 2,3
x EXP 6 Sequence with chords | Cons., Diss. | Known 2,3
EXP 7 Inharmonic notes - Known 2

® Reference measure: Spectral Signal-to-Error Ratio (SSER)

| 2

Zr,k’ ‘S(?", k

SSER = 1010g10 ,)\ 5
Zr,k(|8(r7 k)| - ‘S(’I“, k)‘)

® Basic experiments:

Polyphony
Source type 2 | 3 | 4
Individual notes, consonant (EXP 1) || 6.93dB | 5.82dB | 5.35 dB
Individual notes, dissonant (EXP 2) 9.38dB | 8.36 dB | 5.95dB
Sequences of notes (EXP 3k) 6.97 dB | 7.34 dB -

® Extended experiments:

No. Instruments
Source type 2 | 3

One chord (EXP 4) 7.12dB | 6.74 dB
One cluster (EXP 5) 4.81 dB | 4.77 dB
Sequences with chords and clusters (EXP 6) 4.99dB | 6.29 dB
Inharmonic notes (EXP 7) 7.84 dB -
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Stereo separation

MIXTURE

® Extension of the previous mono R gt
system to take into account I STERBOBSS
ngular
spatial diversity in linear stereo [kemel Clustering)
: — A
mixtures (M = 2) I
N [ Shortest path ]
: - _ resynthesis
T (t) = Z rn Sn (L), m=1,...,M. N Y,
—~
® Principle:
4 N
A J y A J
O  Afirst Blind Source Separation [Sim‘s‘)idal M"de““g]
(BSS) stage exploiting spatial v Ty
diversity for a preliminary [ Onset detection ]
separation, solely assuming Lt
sparsity (Laplacian sources). [ Track grouping )
After [Bofill&ZibulevskyOl]. Timbre I
lrﬁ)(;g:}l, {Timbre .matchi'ng +} 7777777 . Segmentation
o  Refine the partially-separated ma“’ftyff’““g resle
. - y '
BSS channels applying a e
modified version of the R B S N :
previous sinusoidal and model- ] eneons =
based methods. _ detecton L7 H{)
N J vy
® No onset separation required! SOURCES
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BSS stage: mixing matrix estimation

® To increase sparsity, both BSS stages are performed in the STFT domain.

® If the sources are enough sparse, the mixture bins (with radii p = /23,4 + 23,
and angles 6., = arctan(z,,,/21,) ) cONcentrate around the mixing directions.

® The mixing matrix can be thus recovered by angular clustering.

® To smooth the obtained polar histogram, kernel-based density estimation is
used, with a triangular polar kernel.

Estimated density: p(0) = Z Prk K (A (0 — 0,1))

0 .
— 2 if |8l < /4
Triangular kernel: K (0) = { 07/4 o1|3h|erw7irs/e

Mixture scatter and found directions

1r

ool Estimated density (polar)

0.8} 90

0.7f
0.67

0.57

Left

0.4f
0.3

0.2

0.1f

h 0.2 0.4 0.6 0.8 1 180 : : : N : : _ 0
' " Right ' Left Right

[Bofill&ZibulevskyOl] P Bofill and M. Zibulevsky. Underdetermined Blind Source Separation Using Sparse Representations. Signal Processing, Vol. 81, 2001.
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BSS stage: source estimation

LEFT

A

® Sparsity assumption: sources are Laplacian: p(¢) = Ze= Mo

2

® Given an estimated mixing matrix A and assuming the sources are Laplacian,
source estimation is the L/-norm minimization problem:

N

Srkp — argiin E |Sn,rk|
Xrk=Asrr (n=1

Example of shortest-path resynthesis

® This minimization problem can be
interpreted geometrically as the
shortest-path algorithm:

* For each bin x,a reduced 2 x 2 mixing
matrix A, = [a,, & is defined, whose
columns are the mixing directions enclosing it.

* Source estimation is performed by inverting
the determined 2 x 2 subproblem and by
setting all other N-M sources to zero:

a _ -1
Sprk — Ap Xrk
Sp = 0, Vn #£ a, b.

RIGHT

Juan José Burred.
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Extraneous track detection

® After BSS, the same sinusoidal modeling, onset detection, track grouping and
timbre matching stages are applied to the partially-separated channels.

O  All of these stages are now far more robust because the interfering sinusoidal
tracks have already been partially suppressed.

® New module: extraneous track detection

O  Detects interfering tracks most probably introduced

Example: three piano notes, separated from a ) ..
° P b by the other channels, according to three criteria:

3-voice mixture with an oboe and a trumpet.
Temporal criterion |.  Temporal criterion. Deviation from onset/offset.

Timbral criterion )
" Inter-channel comparison

Timbral criterion. Matching of individual tracks,
with the best timbre matching parameters.

4000 v

ssool! o : | Length dependency must be cancelled:
— 1 E——
! ! - 1
3000 ! ! — It Ry
§2500:— : : J— | L(tt‘ei) — Hp(AtrlMi(ftT)aVi(ftr»
s . - r=1
S 2000/ e -
R L 3. Inter-channel comparison. Search tracks in the
iL 1500t ——— , T — other channels with similar frequency support
1000 - = and decide according to average amplitudes.

— ® Finally, extraneous sinusoidal tracks are subtracted from
0 20 40 60 80 100 the BSS channels.

Time (frames)
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Evaluation of Stereo Separation

® Same instrument model database (5 classes)

® |0 mixtures per experimental setup, | 10 mixtures in total, cross-validated

® Polyphonic instrument detection accuracy (%):

Consonant (EXP 1s) Dissonant (EXP 2s)
Polyphony 2 | 3 | 4] Av. 2 | 3 | 4] Av.
Euclidean distance 63.33 77.14 76.57 72.35 60.95 | 86.43 78.00 75.13
Likelihood 86.67 | 84.29 | 82.38 | 84.45 || 81.90 | 81.95 | 81.33 | 81.73
Weighted likelihood 70.00 | 70.95 | 66.38 | 69.11 78.10 | 78.62 74.67 | 77.13

® Separation quality

Sequences (EXP 3s)
Polyphony 2 | 3 | Av.
Euclidean distance 64.71 59.31 62.01
Likelihood 67.71 | 74.44 | 71.08
Weighted likelihood 69.34 58.34 63.84

O  Apart from SSER, Source-to-Distortion (SDR), Source-to-Interferences (SIR)
and Source-to-Artifacts Ratios (SAR) can be now computed (locked phases)

O  Comparison with applying only track retrieval to the BSS channels

Track
retrieval Sinusoidal subtraction
Source type | Polyph. SSER SSER | SDR | SIR | SAR
.. 3 13.36 18.26 17.35 | 40.48 17.39
Individual notes, cons. (EXP 8s) 4 14.88 15.31 | 14.96 | 36.25 | 15.06
.. ) 3 11.88 21.72 20.91 44.56 21.03
Individual notes, diss. (EXP 9s) 4 15.10 18.93 | 18.24 | 40.36 | 18.30
) 3 11.21 17.95 17.17 32.30 17.44
Sequences with chords (EXP 10s) 4 10.57 || 12.16 | 11.18 | 26.26 | 11.51
Track
retrieval Sinusoidal subtraction
Source type | Polyph. SSER SSER | SDR | SIR | SAR
.. 3 13.92 21.13 | 20.70 | 43.77 | 20.77
Individual notes, cons. (EXP 1s) 4 12.10 17.13 | 16.78 | 40.83 | 16.83
.. ) 3 14.37 24.20 23.63 47.01 23.72
Individual notes, diss. (EXP 2s) 4 12.06 21.33 | 20.76 | 43.74 | 20.81
Sequences of notes (EXP 3s) 3 12.52 22.00 | 21.48 | 44.79 | 21.53

Overall improvements:

©  Compared to mono separation:

5-7 dB SSER

©  Compared to stereo track retrieval:
5-10 dB SSER
©  Compared to using only BSS:
2-4 dB SDR and SAR
3-6 dB SIR

Juan José Burred.
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Conclusions

® J[imbre models

O  Representation of prototype spectral envelopes as either curves in PCA space
or templates in time-frequency

O  Use for musical instrument classification: 94.86% accuracy with 5 classes.

® Monaural separation (based on sinusoidal modeling and timbre models)

No harmonicity assumption: can separate inharmonic sounds and chords
No multipitch estimation

No note-to-source clustering

Drawback: onset separation required

O O O O O

Use for polyphonic instrument recognition: 79.81% accuracy for 2 voices,
77.79% for 3 voices and 61% for 4 voices.

® Stereo separation (based on sparsity-BSS, sinusoidal mod. and timbre models)

All the above features, plus:

Keeps (partially separated) noise part

Far more robust

No onset separation required

Better than only BSS and than stereo track retrieval

O O O O O o©°

Use for polyphonic instrument recognition: 86.67% accuracy for 2 voices,
86.43% for 3 voices and 82.38% for 4 voices.

Juan José Burred. Musical Source Separation. 24



Outlook

® Separation-for-understanding applications

O  Use of the separation systems in music analysis or transcription applications

® |Improvement of the timbre models
O  Test other transformations, e.g. Linear Discriminant Analysis (LDA)
O  Other methods for extracting prototype curves, e.g. Principal Curves
O  Separation of envelopes into Attack-Decay-Sustain-Release phases
O  Morphological description of timbre as connected objects (clusters, tails)

® Other applications of the timbre models
O  Further investigation into the perceptual plausibility of the generated spaces
O  Synthesis by navigation in timbre space

O  Morphological (object-based) synthesis in timbre space

® |Improvement of timbre matching for classification and separation
O  Other timbre similarity measures
O  More efficient parameter optimization, e.g. with Dynamic Time Warping (DTW)
O  Avoiding the onset separation constrained in the monaural case.

® Extension to more complex mixtures

O  Delayed and convolutive (reverberant) mixtures

©  Higher polyphonies
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