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Abstract

The present work describes the design, implementation and evaluation of a system
for automatic audio signal classification. The signals are classified according to
audio type, such as speech, background noise and several musical genres. The
classification process is organized hierarchically, that is, as a succession of type
decisions. At the highest level of the hierarchy, signals are recognized as speech,
music or background noise. Speech signals are further divided into male speech,
female speech and speech with background music or noise. Special focus is given
to the distinction between music genres, where a total of 13 classical and non-
classical genres have been considered. Also, an effort was made in selecting the
music genres, aiming at simplicity and generality.

A large number of audio features are evaluated for their suitability in such a
classification task, including well-known physical and perceptual features, audio
descriptors defined in the MPEG-7 standard, as well as new features proposed
in this work. They are selected with regard to their robustness to noise and
bandwidth changes, and to their ability to distinguish a given set of audio types.

A density estimation classifier (Gaussian Mixture Model) and a nonpara-
metric classifier (k-Nearest Neighbor) are thoroughly compared with respect to
classification accuracy and computational performance. In contrast to previous
systems, the feature selection and the classification process itself are carried out
in a hierarchical way. This is motivated by the numerous advantages of such a
tree-like structure, which include easy expansion capabilities, flexibility in the
design of genre-dependent features and the ability to reduce the probability of
costly errors. A special effort is made in comparing such a hierarchical approach
with the more common direct, single-stage approach.

As a result of these considerations, a hierarchical Gaussian Mixture Model
has been chosen to be implemented in a final prototype application for classi-
fying audio files. The evaluation of this application, which can perform feature
extraction in real-time, confirms the suitability of the hierarchical approach, both
in computational and classification performance. In spite of the higher number
of audio classes considered, the used approach achieves similar or higher classi-
fication rates than previous related systems, apart from offering the mentioned
advantages. This makes the hierarchical approach a promising base for future
developments.
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Kurzfassung

Ein objektiver Ansatz zur inhaltsbasierten Klassifizierung
von Audiosignalen

Die vorliegende Arbeit beschreibt den Entwurf, die Implementierung, sowie die
Auswertung eines Systems für die automatische Klassifizierung von Audiosig-
nalen. Die Signale werden den Kategorien Sprache, Hintergrund und verschiede-
nen Musikgenres zugeordnet. Die Klassifizierung ist hierarchisch organisiert, d.h.,
als eine Folge von Klassenentscheidungen. Auf der höchsten Stufe der Hierarchie
werden Signale als Sprache, Musik oder Hintergrundgeräusch erkannt. Sprachsig-
nale werden daraufhin in männliche Sprache, weibliche Sprache und Sprache mit
Hintergrundmusik oder Geräusch getrennt. Auf die Unterscheidung zwischen
insgesamt 13 klassischen und nichtklassischen Musikgenres wird ein besonderer
Schwerpunkt gelegt.

Eine große Anzahl von Audiomerkmalen (features) wird auf ihre Eignung für
eine solche Klassifizierungsaufgabe untersucht. Unter diesen Merkmalen befinden
sich bereits vorhandene physikalische und wahrnehmungsangepasste Größen, im
MPEG-7 Standard definierte Audio-Deskriptoren, sowie neue, in dieser Ar-
beit vorgeschlagene Merkmale. Sie werden mit Rücksicht auf ihre Klassen-
trennungsfähigkeit, sowie auf ihre Invarianz gegenüber hinzugefügtem Rauschen
bzw. Veränderungen der Bandbreite ausgewählt.

Ein parametrischer Klassifikator (Gaussian Mixture Model) und ein nicht-
parametrischer Klassifikator (k-Nearest Neighbor) werden in Bezug auf ihre
Klassifizierungsfähigkeit und rechnerische Effizienz umfassend verglichen. Im
Gegensatz zu bisherigen vorgeschlagenen Systemen wird in dieser Arbeit sowohl
die Auswahl der Merkmale als auch die Klassifizierung hierarchisch durchgeführt.
Dies wird von den zahlreichen Vorteilen, die eine solche Baumstruktur aufweist,
motiviert. Unter ihnen befinden sich leichte Erweiterungsmöglichkeiten,
Flexibilität beim Entwurf genrespezifischer Merkmale und die Fähigkeit, die
Wahrscheinlichkeit schwerwiegender Klassifikationsfehler zu reduzieren. Beson-
derer Wert wird somit auf den Vergleich einer hierarchischen Klassifizierung mit
dem üblicheren direkten Ansatz gelegt.

In Folge dieser Betrachtungen wird ein hierarchischer Gaussian Mixture Model
Klassifikator für die Implementierung einer Prototyp-Anwendung zur Klassi-
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fizierung von Audiodateien gewählt. Die Anwendung kann die Merkmale in
Echtzeit extrahieren. Die Auswertung der Ergebnisse bestätigt die Eignung des
vorgeschlagenen hierarchischen Ansatzes, sowohl in Hinsicht auf Klassifizierungs-
genauigkeit, als auch auf rechnerische Leistungsfähigkeit. Der hier verwendete
Ansatz erreicht, trotz einer höheren Anzahl von Klassen, ähnliche oder höhere
Klassifizierungsgenauigkeit wie bisherige Systeme, wobei er zusätzlich die genann-
ten Vorteile bietet. Er erweist sich somit als eine vielversprechende Basis für
zukünftige Entwicklungen.
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Resumen

Procedimiento Objetivo para la Clasificación de Señales de
Audio Basada en el Contenido

El crecimiento exponencial de Internet, aśı como los últimos avances en tec-
noloǵıas de redes y de compresión de datos, han hecho posible el fácil acceso
a grandes cantidades de información. Es más que probable que, en un futuro
cercano, los servicios de música disponibles on line superen en importancia a
la acostumbrada distribución de audio almacenado en soportes f́ısicos, como los
discos compactos o los DVDs. Actualmente, la exploración y administración de
datos de audio está basada en breves informaciones textuales añadidas manual-
mente a los ficheros, lo cual es una tarea costosa que requiere altos recursos
temporales y humanos. Más aún, esta información a menudo resulta incompleta,
y en ocasiones ni siquiera está disponible.

Las técnicas de Análisis del Contenido tienen como objetivo extraer au-
tomáticamente de las señales información acerca de su contenido, y han hecho
posible un gran número de nuevas aplicaciones, como clasificación y recuperación
de información basada en el contenido, segmentación, tratamiento inteligente de
señales, etc.

El presente Proyecto Fin de Carrera describe el diseño, implementación y
evaluación de un sistema para la clasificación automática de ficheros de audio.
El proceso de clasificación está organizado de forma jerárquica. En el primer
nivel de la jerarqúıa, el audio es reconocido como habla, música o ruido de fondo.
En los siguientes niveles, las señales de habla son divididas en habla masculina,
femenina y habla con ruido o música de fondo. El proyecto está especialmente
centrado en la distinción de géneros musicales, para lo cual han sido considerados
un total de 13 géneros clásicos, como música sinfónica, coral, de cámara, etc. y
no clásicos, como rock, pop, jazz, etc.

Las aplicaciones de un sistema de clasificación de estas caracteŕısticas in-
cluyen, por ejemplo, organización automática de archivos de sonido, tratamiento
inteligente de señales, ecualización automática, asignación inteligente de ancho
de banda, codificación inteligente de audio, segmentación de flujos de audio o
tratamiento de señales de video basado en su banda sonora.

El sistema descrito se basa, al igual que todos los sistemas propuestos en
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proyectos de investigación relacionados, en las técnicas proporcionadas por el
campo del Reconocimiento de Patrones. De cada señal a clasificar se extrae una
serie de caracteŕısticas, que a su vez son tomadas como elementos del vector de
caracteŕısticas asociado a dicha señal. De esta forma, cada señal está representada
por su vector asociado en el espacio de caracteŕısticas, de tantas dimensiones
como caracteŕısticas extráıdas. Estos vectores se emplean para entrenar a un
clasificador, el cual infiere una regla de decisión que aplicará para asignar una
clase determinada a un vector entrante de naturaleza desconocida.

En previas investigaciones relacionadas se han propuesto numerosas combina-
ciones de caracteŕısticas a extraer (t́ımbricas, perceptivas, estad́ısticas) y clasifi-
cadores (estad́ısticos paramétricos, estad́ısticos no paramétricos, neuronales) para
llevar a cabo detección de audio. Sin embargo, determinados aspectos inherentes
al proceso de diseño de un clasificador han merecido sólo escasa atención hasta
el momento. Estos son: la creación de una taxonomı́a adecuada, el estudio de
los problemas que conlleva un alto número de dimensiones en el espacio de ca-
racteŕısticas y el estudio del diferente grado de adecuación de las caracteŕısticas
en función de las clases o géneros a clasificar. Parte de la motivación del presente
proyecto ha sido la de investigar la influencia de estas cuestiones en la realización
del sistema.

En primer lugar, se ha puesto especial interés en crear una taxonomı́a de
clases de audio que sea a la vez simple y lo más completa posible. En el caso de
los géneros musicales, se ha intentado definir clases que sean lo más consecuentes
posible en cuanto a su significado musicológico generalmente aceptado.

Un total de 90 caracteŕısticas sonoras han sido detalladamente examinadas
respecto a su capacidad de representación y separación de señales pertenecientes
a diferentes clases. Entre ellas se encuentran caracteŕısticas ya conocidas y uti-
lizadas en sistemas previos de clasificación de audio o de detección del habla, como
centroide, rolloff, flujo espectral, envolvente temporal o MFCCs (Mel Frequency
Cepstral Coefficients). Asimismo han sido implementados y examinados algunos
de los descriptores de audio definidos dentro del reciente estándar MPEG-7. En
particular, han sido encontradas algunas faltas de coherencia en la definición de la
relación de armonicidad (harmonic ratio) perteneciente al citado estándar, razón
por la cual se ha optado por la realización de una versión modificada de la misma.
Por último, se proponen una serie de nuevas caracteŕısticas, como los momentos
centrales de tercer y cuarto orden de la señal en el dominio del tiempo, una me-
dida simplificada de sonoridad y una medida de regularidad ŕıtmica basada en la
autocorrelación del histograma ŕıtmico de la señal.

Como se ha mencionado, usar un alto número de caracteŕısticas puede resultar
contraproducente. La llamada maldición de la dimensionalidad es un problema
clásico dentro del reconocimiento de patrones, e implica que el rendimiento de
un clasificador deja de aumentar, o incluso puede disminuir, si se sobrepasa un
cierto número de caracteŕısticas observadas. Por ello, un reducido número de ellas
han sido seleccionadas de entre las 90 iniciales. La selección ha sido llevada a
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cabo de forma totalmente sistemática. En primer lugar, han sido descartadas las
caracteŕısticas más susceptibles a la adición de ruido y a la variación moderada
del ancho de banda de la señal. De esta forma se garantiza un rendimiento
similar del clasificador para diferentes calidades de audio. Las caracteŕısticas
restantes han sido objeto de un algoritmo de selección automático (Búsqueda
Secuencial Progresiva) que da como resultado un subconjunto de caracteŕısticas
con propiedades óptimas en la separación de clases. Se ha obtenido que un
número de 20 caracteŕısticas conlleva una relación óptima entre rendimiento de
clasificación y tiempo de cálculo.

Al contrario que en otros sistemas propuestos con anterioridad, la selección de
caracteŕısticas, aśı como el proceso de clasificación, han sido realizados en el pre-
sente proyecto de forma totalmente jerárquica, siguiendo un árbol de clasificación
que se corresponde exactamente con la taxonomı́a de clases utilizada. El proce-
dimiento común consiste en considerar el problema de clasificación como la toma
de una única decisión entre todas las clases posibles, y no como una secuencia de
decisiones. Sin embargo, el método jerárquico conlleva numerosas ventajas. En
primer lugar, este procedimiento permite la obtención de aquéllas caracteŕısticas
que resultan más adecuadas a la hora de clasificar un subconjunto de clases dado.
Por ejemplo, una caracteŕıstica que describa la fuerza de los pulsos ŕıtmicos será
probablemente más adecuada en la distinción entre música clásica y música pop
que en la distinción entre géneros de música de cámara. Por otro lado, el método
jerárquico permite que los errores obtenidos en la clasificación sean más acepta-
bles que en el caso directo. Por ejemplo, que un fragmento de una sinfońıa sea
clasificado como perteneciente a un concierto para solista y orquesta es menos
grave de cara al usuario que si fuera clasificado como rock. Otras ventajas in-
cluyen la posibilidad de diseñar caracteŕısticas que se adapten a las necesidades
particulares de cada género, y la mayor facilidad de ampliación de la taxonomı́a.

Por todo ello, se ha puesto especial interés en comparar los métodos directo y
jerárquico en cuanto a la calidad de clasificación y al rendimiento de cálculo. En
cada uno de los métodos se ha comparado a su vez el empleo de un clasificador
paramétrico (Modelo de Mezclas Gaussianas, Gaussian Mixture Model, GMM )
y de un clasificador no paramétrico (Vecinos más Cercanos, k-Nearest Neighbor,
kNN ). La extracción de caracteŕısticas, aśı como los experimentos de selección
de las mismas y de evaluación de clasificadores, han sido implementados usando
MATLAB.

El método finalmente elegido, tras considerar todo lo anterior, ha sido el de
una clasificación jerárquica basada en GMM. En base a este algoritmo se ha
implementado una aplicación prototipo para la clasificación de ficheros de audio
en formato WAV. La herramienta ha sido programada en el lenguaje C/C++, y
funciona como aplicación de ĺınea de comando en sistemas operativos Windows.
El programa es capaz de extraer las caracteŕısticas en tiempo real y de diferenciar
música, habla y ruido de fondo con una precisión del 95%, música clásica de
música no clásica con un 96% o música de cámara de música orquestal con un
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82%. Estos porcentajes indican la posibilidad de utilización práctica del sistema
para los niveles más altos de la taxonomı́a. Sin embargo, las mayores dificultades
se han encontrado en la diferenciación de géneros más espećıficos, como en la
distinción entre géneros de música de cámara, donde sólo se ha obtenido una
precisión del 55%. Para mejorar la clasificación en los géneros más espećıficos de
la taxonomı́a, y permitir una futura realización práctica de todos los niveles de
la jerarqúıa, se requiere el diseño de caracteŕısticas más sofisticadas y adaptadas
a su correspondiente clase o subclase.

Este Proyecto Fin de Carrera ha sido realizado en la empresa
zplane.development, situada en Berĺın y dedicada al desarrollo de software y hard-
ware para el tratamiento de audio, en colaboración con el Instituto de Sistemas
de Telecomunicación (Institut für Telekommunikationssysteme) de la Universi-
dad Técnica de Berĺın (Technische Universität Berlin), dentro del programa de
intercambio entre dicho instituto y la Escuela Técnica Superior de Ingenieros de
Telecomunicación de la Universidad Politécnica de Madrid.
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Chapter 1

Introduction

Over the last decade, the exponential growth of the Internet has made huge
amounts of information easily available to millions of people. Furthermore, ad-
vances in networking technologies, as well as in coding and compression algo-
rithms, brought about increased bandwidth and allowed to make optimal use of
it. As a result, content requiring high levels of bandwidth, such as video and
audio streams, or any kind of multimedia documents, coexists nowadays with the
traditional textual and graphical data. It is well known that the social, commer-
cial, and even legal impacts of this new paradigm are changing the way people
produce, share and store information.

In contrast to radio and television, two technologies also providing high band-
width and real-time transmission, the Internet allows to retrieve content on de-
mand. With regard to this particular characteristic, the Internet is not a direct
competitor to radio or TV, but to what could be regarded as the present prevalent
“on-demand” technology: the storage on physical media. It is not unlikely that
in the near future, music available on-line will overtake the usual distribution of
audio stored on CDs or DVDs. The record industry is well aware of this, as it is
starting to set up on-line music services, as well as fighting against copyright in-
fringements in music file sharing. In the next years, the video and movie industry
should also begin to worry.

Now, although the variety and quantity of accessible data is enormous, the
way in which we can manage and search for it is frustratingly limited. At this
point, it is only possible to search the Internet using textual queries, for example
using a web browser. This works well for written documents, since in this case
text itself is the content. But when searching for an image, a video or an audio
clip, one must rely on the textual information manually attached at one time to
the corresponding file. This information is often inaccurate, and in most cases
it consists only of the title and the author. In many cases, there is no such
information at all, the file name being the only hint about its content. Today, it
is not possible to perform such natural actions as to search for an image containing
certain objects, a movie scene featuring a given actor, or organizing a collection

1
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of music files according to the genre or the mood, unless this information has
manually been attached to the file beforehand, which is in most cases a nearly
unfeasible task.

Moreover, one can take a further step and imagine content-aware search en-
gines which will not only be based on text queries, but will also allow to search for
images that match a certain pattern or for music excerpts that contain a melody
that has been played on a keyboard or hummed into a microphone.

The above considerations led in the past years to the fast growth of the
Content Analysis (CA) or Machine Perception research field. Its goal is to make
computers capable of automatically extracting information about the content
from data. Although CA is not a completely new discipline (some CA technologies
that have been widely used for many years include text analysis, computer vision
and speech recognition systems), it is now being enriched to consider much wider
types of signals, and thus it will provide the infrastructure needed to implement
all the above mentioned retrieval and classification services as well as many others.
It is likely that this will revolutionize our day-to-day use of media.

Content Analysis versus Information Retrieval

The term Information Retrieval (IR) is often used as a synonym for Content
Analysis. However, to retrieve information also means to search for a given entry
in a database. This has led to certain confusion about what is really meant when
speaking of IR. For example, one of the main subjects of classic IR is the study
of text-based query techniques like the ones used to browse information on the
Internet. On the other hand, retrieving information from a signal can also be
viewed as an act of CA. In order to avoid misunderstandings, the clearly defined
term of Content Analysis will be used in the present work instead of Information
Retrieval.

1.1 Audio Content Analysis

Audio Content Analysis , also called Computer Audition or Machine Listening ,
deals with the extraction of information from sounds. It should be noted that,
in order for an audio system to be regarded as performing Content Analysis, it
should be able to provide “high-level” descriptions, such as spoken content for
voice or melody and tempo for music, or even more abstract information like
musical structure, genre or mood. Simple features like loudness or pitch provide
“low-level” information and by themselves might not suffice for speaking of a true
description of content. Nevertheless, they constitute the base upon which higher
levels of abstraction are built.

Automatic Speech Recognition (ASR) is by far the field that has gathered
the most attention of the audio analysis community over the last 20 years. Many
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programs capable of transcribing voice into text with excellent performance have
been on the market for a long time. Although ASR is by no means a trivial task,
it has raised great interest among researchers and investors, because it offers a
natural human-machine-interaction. In contrast, little interest has been paid to
non-speech audio signals.

But, as mentioned, this situation is changing rapidly with the advent of on-line
available audio material. Many research projects have started with the goal
of developing tools that will allow the analysis, management and browsing of
any kind of sound data [13]. Applications include sound archiving, retrieval,
classification, segmentation, intelligent signal processing, musicological analysis,
etc. The increased interest for content analysis has even led to the completion of
an International Standard for multimedia content description, MPEG-7, whose
audio part will be discussed in Sect. 3.2 (for a historical review of research in
audio classification, see Sect. 3.1).

As shown in Fig. 1.1, there are two possible ways to extract content from
an audio signal. One approach is to transcribe the sounds into some kind of
symbolic representation. In the case of speech, this symbolic description is the
text that has been spoken. The resulting text data (Representation Stage) can be
forwarded to a text analyzer using one of the many available text-based content
extraction techniques, which can analyze its syntactic or semantic contents at
the final Application Stage. Of course, the transcription can also be viewed as
an application itself. The musical equivalent of the transcription approach is to
extract the musical score in first place, and then to analyze it to extract further
content.

There are also a number of applications that cannot rely on transcription,
such as speaker recognition or musical instrument detection. These are solely
based on acoustical features and correspond to the lowest path on the figure.

Figure 1.1: Overview of Audio Content Analysis.
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Additionally, there is a third group of applications, labeled as common appli-
cations in the figure, that can be accomplished following either way. For example,
a music archiving and retrieval system could be based on the musical scores, but
also on some reduced set of acoustical measurements that could accurately de-
scribe each musical piece (a technique called Audio Fingerprinting). It is also
possible to perform musical genre detection based on these characteristics; how-
ever, one can expect this classification to be less accurate than when the scores
are available, because in the latter case we could easily extract information about
harmony, melody, instrumentation and other factors contributing to describe a
specific style.

Hence, if we are seeking to implement any of the common applications, why
should we attempt to design them following the acoustic analysis approach, when
the symbolic approach is likely to outperform it in all cases? The reason is
that the transcription is a daunting, difficult task in most cases, and constitutes
a “bottleneck” in the process of Audio Content Analysis. As we have seen,
transcription has long been achieved successfully in ASR systems, but the mostly
polyphonic nature of music1 makes it considerably harder to discriminate and
transcribe the constituent voices, or to extract one of them out of the polyphonic
mixture. Today, there are no systems capable of reliably transcribing more than
two simultaneous voices into a score, and it is a matter of controversy as to
whether this will ever be achieved.

Therefore, most of the work in the field of symbolic music content analysis has
been made assuming that the music is already available in symbolic form (e.g. in
MIDI 2 files). Obviously, this is not the case in most situations, in which audio
is available as a raw bit stream. Acoustic-based approaches allow us to avoid
the transcription “bottleneck” and to implement a wide range of content-based
applications based directly on the raw audio data.

1.2 Audio Classification

”Whoever tries to find useful information over the World Wide Web
understands immediately that classification and similarity are his best
allies, and the panic we are facing when exposed to such amounts of
information is a good suggestion to understand not the semioticist’s 3

but every man’s and woman’s anxiety to separate, define, classify.”[10]

1In its most precise sense, the term polyphony denotes multi-voiced music in which each
voice develops an independent melodic line, as opposed to homophony, in which each voice is
subordinated to a rigid vertical chordal structure. However, it will be used here in the broad
sense, denoting any kind of multi-voiced music.

2Musical Instrument Data Interface.
3Semiotics is the study of signs and their interrelations. In its broadest sense, a sign is an

element of language composed by a signifier (a sound or an image) and a signified (its content).
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As mentioned, classification is one of the possible applications of Audio Con-
tent Analysis. In a classification system, the input signal is analyzed and a label
describing that signal is delivered at the output. There are many possible crite-
ria upon which the signals can be separated, such as timbral content, pitch or
musical tempo. But in the context of multimedia data managing and browsing,
the most useful classification is the one that assigns labels describing the type or
category of the signal, that is, if the analyzed sound is speech, noise, if it belongs
to a certain music genre, etc. This is the natural way to classify audio signals,
and all common sound databases on the Internet, sound archives, as well as retail
shops are organized this way.

Audio classification should not be confused with another closely related ap-
plication: audio identification. In the latter, the exact identity of the signal is
obtained, while in the first, a broad category is assigned to it. In a musical
context, to identify means to retrieve the title and composer or performer of a
piece, while classifying means to assign a genre to it. One of the most impor-
tant applications of audio identification is the copyright control. Technically, the
most important difference is that audio identification relies on a previously cre-
ated database of descriptions of individual sounds (such as the audio fingerprints
mentioned earlier), and it will not identify a new sound if it is not already con-
tained in the database. In contrast, a classification system should be capable of
assigning a correct class to any incoming, unknown signal.

1.2.1 Applications

The following possible applications of a category-based classification show why
this research field is so attractive at present.

Audio Database Indexing. A stored audio collection is scanned, assigning an
audio-class label to each file. This enables later audio type based browsing,
for example in searching a database for a specific musical genre. This is
specially useful for large audio and music collections, such as the audio
archives in broadcasting facilities (radio, TV), in soundtrack studios for the
movie industry or in music content providers on the Internet. Currently,
this classification is done manually, which is an extremely time and human
resource consuming task. Perhaps the most common example illustrating
this case are the large collections of downloaded MP3 files stored on hard
disks, very often in a chaotic manner. A classifying program could create
a directory tree to organize the music according to genre.

Intelligent Signal Processing. A possible example of intelligent signal pro-
cessing is automatic equalization. Equalizers are a well-known feature in
virtually all types of audio equipment, not only at the professional, but also
at the consumer level, including HiFi systems, Walkmans, computer sound
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cards, car audio systems, etc. If these systems were capable of detecting
the kind of audio they are playing, the corresponding equalization presets
could be automatically loaded and applied. Another possibility could be a
content dependent automatic control of dynamics processing, for example
in the adaptation of loudness in broadcasting.

Intelligent Signal Analysis. Classification would allow to construct an intel-
ligent signal analysis system, which could send the input signal to an ASR
transcriber if speech were detected, to an (hypothetical) polyphonic music
transcriber if music were detected, or to an environmental sound classifier if
other sounds were detected. For solo music, a musical instrument identifier
could be activated, for rock or pop music, a beat tracking system, and so
on.

Automatic Bandwidth Allocation. A telephone network with audio classi-
fication capabilities could dynamically allocate bandwidth for the signal
being transmitted. More bandwidth would be allocated for music than for
speech transmissions, and no bandwidth at all if only background noise is
detected. This would help multiplexing systems to work more efficiently.
The same applies to audio streams in data networks such as the Internet.

Segmentation. The signal to be classified contains often a sequence of different
audio classes. Examples are commented music radio programs, or TV or
movie soundtracks, where speech, music and background sections alternate.
Segmentation is a closely related topic to classification, and consists of
finding the exact transition moment between two consecutive audio types.
This allows to extract desired parts from a stream and to discard undesired
ones.

Intelligent Audio Coding. Some audio coding algorithms are designed to work
in an optimal way with speech signals, others with music signals. As a par-
ticular case of Intelligent Signal Processing, audio classification would allow
to switch automatically between coders, depending on the audio type at the
input.

Broadcast Browsing. A classification system with real-time capabilities could
allow to scan a radio or TV dial in order to find the desired music genre.

Audio Assisted Video Processing. It is usual to regard video and its corre-
sponding audio as completely independent data sources. It is clear, however,
that they contain a lot of information about each other. Soundtrack analy-
sis can help to segment a video in scenes, and to find a certain kind of video
content. For example, an audio-based TV-commercial detector could stop
the video recorder to skip unpleasant commercial breaks during a movie.
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1.3 Scope and Overview

The goal of this work is to find a meaningful set of acoustical and perceptual
measurements, as well as the suitable algorithms to objectively classify an input
raw audio signal as speech, background noise, or one of several musical genres.
It especially focuses on the distinction between musical types. For this purpose,
the audio features, as well as the selection algorithms and the evaluation exper-
iments, are firstly implemented in MATLAB. The considerations resulting from
this evaluation will led to the creation of a prototype command-line application,
programmed in the C/C++ language, for the classification of audio files. The
preliminary assumption is that the analyzed files contain only one type of au-
dio. Otherwise, segmentation techniques, which are out of the scope of the work,
would have to be applied.

The first step in the design process of the classifier consists of selecting the
audio classes into which the signals are to be classified. In the case of music, the
genre structure should be very carefully created, taking into account generality
and consistency.

The main part of the work consists of the thorough evaluation of the candi-
date sound measurements and classification algorithms, which will be compared
with regard to classification accuracy, computational performance, flexibility and
generality. The resulting software will serve to demonstrate the feasibility of the
selected approach, and as a possible base for future developments.

The work is structured as follows:
In Chapter 2 the needed theoretical background from the fields of signal pro-

cessing, psychoacoustics, statistics and pattern recognition is provided.
Previous research on audio classification is reviewed in Chapter 3. Also, the

MPEG-7 standard is briefly introduced here.
Chapter 4 focuses on the selection of the audio classes. It especially addresses

the inherent difficulty of establishing an objective taxonomy of musical genres.
Chapter 5 details the audio-specific part of the process: the choice and design

of the features to be extracted from the audio signals.
As will be seen, it is worthwhile to use only a reduced set of features for the

classification task. This feature selection process is outlined in Chapter 6.
Several classification algorithms are evaluated in detail in Chapter 7. Classify-

ing performances and other implications concerning implementation are reviewed
for each approach.

Following the considerations in Chapter 7, an algorithm was selected for the
final application. This implementation is addressed in Chapter 8, and the results
of its evaluation are given in Chapter 9.

In Chapter 10 some conclusions on the obtained results are drawn. The
present work is also positioned in the context of the current state of the research
by reviewing its new contributions. Finally, some thoughts on future research
directions are outlined.



Chapter 2

Background

In this chapter, the theoretical background needed to follow the rest of the work
is provided. Its goal is also to present the definitions and notational conventions
that will be used.

2.1 Signal Theory

2.1.1 Signal Energy and Power

Digital audio signals are both discrete in time and in amplitude. A time-domain
discrete signal is represented mathematically by the notation x[n]1.

For a discrete signal x[n], the energy within the interval [0, N ] is given by

E =
N∑

n=0

|x[n]|2 (2.1)

The average power within that interval is defined as the energy per sample:

P =
1

N + 1

N∑
n=0

|x[n]|2 (2.2)

The square root of the average power is often used, since it has the same unit
as the signal amplitude. It is called the root mean square (RMS) value of the
signal:

RMS =

√√√√ 1

N + 1

N∑
n=0

|x[n]|2 (2.3)

1The square brackets [ ] are used to denote a discrete variable, while the round brackets ( )
denote a continuous variable.

8
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2.1.2 The Short Time Fourier Transform

In many signal processing applications it is most useful to represent a time-
varying signal as a linear combination of sinusoidal (or, more generally, complex
exponential) functions. This is called the representation of the signal in the
frequency domain, or spectrum. The mathematical method that computes the
spectrum from a signal is the Fourier Transform [29]. For a discrete signal x[n],
the Fourier Transform is defined by:

X(ejω) =
∞∑

n=−∞

x[n]e−jnω (2.4)

ω = 2π f
fs

: Normalized circular frequency

f : Frequency

fs: Sampling frequency

The Fourier Transform of a discrete signal is always periodical in ω with period
ω0 = 2π. If the signal x[n] is real-valued (as in the case of an audio signal), its
magnitude spectrum is evenly symmetric2 about the zero axis.

As can be seen from the above definition, the Fourier Transform assumes
that the input signal is infinitely long. Also, the resulting frequency-domain
representation is continuous (since the frequency f is a continuous variable).
However, none of these facts is desired if computer-based processing is desired,
where quantities (that is, signals and their spectra) should have a discrete and
finite nature.

The Discrete Fourier Transform (DFT) solves both problems at once. If we
assume that x[n] is only N samples long, we can define the N-point DFT as:

X[k] =
N−1∑
n=0

x[n]e−j 2π
N

kn (2.5)

Thus, the finite signal can be represented as a discrete spectrum consisting of
only N frequency coefficients placed at N evenly spaced frequency bins. The DFT
can be viewed as a sampled period of the Fourier Transform of the signal, which
indicates that, for real-valued signals, it is always evenly symmetric about its
middle coefficient k = N/2. This coefficient corresponds to the highest frequency
the DFT can represent, which is called the Nyquist frequency . In general, the
frequency represented by each transform coefficient k is given by

f [k] =
kfs

N
, 0 ≤ k ≤ N/2 (2.6)

It can be seen from this equation that the Nyquist frequency equals half the
sampling frequency fs.

2A function f is said to be evenly symmetric if f(x) = f(−x).
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A highly efficient algorithm for computing the DFT, called the Fast Fourier
Transform (FFT) has allowed the wide deployment of Digital Signal Processing
technologies. In order for the FFT to be computed efficiently, N must be a power
of two.

In this work, the discussion will be restricted to audio signals. Although all
audio inputs are in fact finite, it is not possible to apply the DFT directly to
them because of the following reasons:

• Usually, the length of the input signal is unknown, that is, we do not know
the parameter N needed to compute the DFT.

• The computational costs for computing the DFT grow exponentially with
N , becoming impractical for large values of N , even if we use the FFT.

• The audio signals are stochastic processes whose spectral characteristics
vary in time.

Intuitively, the solution to this problem is to divide the input signals into
blocks, and to compute the DFT of each block, thus obtaining a time-dependent
DFT. More formally, breaking the input signal x[n] into blocks can be regarded as
multiplying it with a window function w[n] that “jumps” along the signal every
R samples. The window length L should be chosen to assure that the spectral
characteristics of the signal remain reasonably stationary during that interval of
L samples. The trade-off between temporal and spectral resolutions must also be
regarded. In the general case, the window length L must not necessarily equal
the step length R, and thus the windowed signal segments can be notated as:

xr[n] = x[rR + n]w[n], 0 ≤ n ≤ L− 1 (2.7)

Throughout this work, the term frame will be used to denote a signal segment.
We will use r as the frame index, whose range will depend on the total length of
the analyzed signal.

The Short Time Fourier Transform (STFT)(in this case, it would be more
accurate to speak about the Short Time DFT) is the time-dependent Fourier
Transform resulting of computing the DFT of each signal frame. Using the above
notation we can write the STFT as:

Xr[k] =
L−1∑
n=0

x[rR + n]w[n]e−j 2π
N

kn, 0 ≤ k ≤ N − 1 (2.8)

N : DFT length
L: Window length
R: Step length

According to the modulation property of the Fourier transform, the transform
of the product of two signals equals the convolution of their transforms. There-
fore, when windowing a signal, the original spectrum will be altered as a result of
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its convolution with the Fourier transform of the window function. Just dividing
the signal into blocks corresponds to using a rectangular window. The Fourier
transform of a rectangular window is a sinc function, which leads to high spectral
deformations when convoluted with the original spectrum. To avoid this, many
different window functions with transforms producing less degradations have been
proposed in the literature [17]. One of the most widely used window functions in
audio signal processing is the Hamming window, defined by:

w[n] = 0.54− 0.46 cos
2πn

L
, 0 ≤ n ≤ L− 1 (2.9)

N , L and R are the three parameters that determine the time and frequency
accuracy and the computational performance of a Fourier Analysis using the
Short Time DFT. The meaning of these parameters is shown graphically in Fig.
2.1. Throughout this work, we will refer to them as DFT (or FFT) length N ,
window length L and step length R, respectively.

To allow perfect reconstruction of one block from its transform, we must select
L ≤ N . When L < N , the last N − L samples of the block must be zero-padded
(replaced by zeros). Also, to avoid data loss, we must select R ≤ L. If R < L,
there is an overlapping of contiguous segments. These considerations lead to the
following design constraint for the three parameters: N ≥ L ≥ R.

2.1.3 Power Spectrum and Parseval’s Theorem

Parseval’s theorem in the context of the discrete STFT states that the signal
energy within an analysis window equals the scaled sum of the squared magnitude

Figure 2.1: Signal windowing and Short Time Fourier Transform parameters.
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of the DFT coefficients:

Er =
L−1∑
n=0

|xr[n]|2 =
1

N

N−1∑
k=0

|Xr[k]|2 (2.10)

This allows the expression 1
N
|Xr[k]|2 to be interpreted as the energy density

spectrum, that is, the energy concentrated at each frequency bin. Similarly, the
power density spectrum or, short, the power spectrum for frame r is given by:

Pr[k] =
1

LN
|Xr[k]|2 (2.11)

2.1.4 The Discrete Cosine Transform

In general, a signal transformation is the representation of a signal as a linear
combination of a set of orthogonal basis functions . In the case of the DFT,
these basis functions are periodic complex exponentials of the form e−j 2π

N
kn (see

Eq. 2.5). One property of the DFT is that it yields complex coefficients, even
when the signal x[n] is real-valued. This motivated the search for other transforms
that would yield only real coefficients.

One of these real-valued transforms is the Discrete Cosine Transform (DCT)
[29], in which the basis functions are cosines. The N -point DCT of a sequence of
N samples is defined as:

X[k] =

√
2

N
α[n]

N−1∑
n=0

x[n] cos

(
πk(2n + 1)

2N

)
, 0 ≤ k ≤ N − 1 (2.12)

where α[n] is given by

α[n] =

{ 1√
2

if k = 0

1 if 1 ≤ k ≤ N − 1
(2.13)

The DCT has the property that its energy is concentrated in its lowest coef-
ficients. Discarding the higher coefficients does not significantly affect the recon-
struction of the original signal by inverting its DCT. For this reason, the DCT
has found its main application in the compression of data.

2.2 Psychoacoustics

The goal of Psychoacoustics is to analyze and model the behavior of the human
hearing system [52]. It is well known that the ear perceives some acoustical
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magnitudes in a nonlinear way, thus converting objective, physical measures in
subjective, “aurally adequate” measures. Several psychoacoustical models have
been proposed to adapt objective measures such as intensity and fundamental
frequency to perceptual ones such as loudness and pitch. Many audio processing
systems benefit enormously by making use of such a perceptual adaptation; the
most representative example thereof are the perceptual audio encoders.

2.2.1 Loudness: Simple Model

The intensity I of a sound is a physical measure defined as the sound power
transmitted through a given area in a sound field. Early psychoacoustical expe-
riments showed that a sound with intensity I is not perceived as being twice as
loud as a sound with intensity I/2. It was found that the perceived loudness,
measured in sones , could be approximately related to the intensity following a
simple exponential law [40]:

L = kIα (2.14)

An exponent value of α = 0.23 has proven to be adequate in the case of
noise, and is also likely to be applicable to other broadband sounds such as music
[52, 27]. Since intensity is linearly related to sound power P or energy E, any
of these quantities can replace I in the above equation, the only difference being
that the constant k will take a different value in each case.

The perceived loudness also depends on the frequency contents of the sound.
This fact is taken into account in other more complex models that divide the
spectrum in critical bands and analyze their individual influence on the final
loudness by considering partial masking effects [52].

2.2.2 Pitch: The Mel Scale

The pitch of a sound depends closely on its fundamental frequency. However,
as in the case of loudness, the two magnitudes are not related linearly. Several
models have been proposed to describe this nonlinearity in pitch perception [41].

One of the most commonly used is the mel scale. It was the result of a set
of experiments in which the test subjects were asked to judge when a pure tone
seemed to have half the pitch of another previously played tone. As expected,
at low frequencies, the relationship is linear, that is, a 220 Hz pure tone was
perceived as having half the pitch of a 440 Hz tone. But at higher frequencies
the relationship becomes more and more logarithmical. For example, a 1300 Hz
pure tone was, in average across the subjects, perceived as having half the pitch
of a 8000 Hz tone.

The mel scale transforms the frequencies in Hz into mel frequencies with
constant “half pitch ratio”. That is, a tone of M mel will always be perceived as



CHAPTER 2. BACKGROUND 14

having half the pitch of a tone of 2M mel. The unit 1 mel is defined such that a
1000 Hz-tone has a pitch of 1000 mel. The relationship is approximately linear
below 1kHz and logarithmic above. Pitch measured in mel is the perceptual
counterpart of fundamental frequency measured in Hz.

Equation 2.15 shows one of the proposed analytical definitions for the mel
scale, which is plotted in Fig. 2.2.

pitch(mel) = 2595 log10

(
1 +

f(Hz)

700

)
(2.15)
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Figure 2.2: The mel scale.

2.3 Random Vectors

This section introduces the principles of mathematical statistics used throughout
the present work. We begin by considering one-dimensional random variables
and later generalizing them with a discussion of the multidimensional (or multi-
variate) case.

2.3.1 Random Variables and their Statistical Characteri-
zation

Although a random variable3 can be fully characterized by its probability den-
sity function (pdf), it is also possible to partially describe it using the so-called
moments . This is particularly useful when the pdf is not known beforehand, or
when it would be computationally costly to determine it, as it is often the case.

3Throughout this work, only continuous random variables will be considered.
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Moments of a random variable

The nth moment αn of the random variable x is defined by

αn =

∫ ∞

−∞
xnp(x)dx (2.16)

where p(x) is the pdf of x.
The first moment is called the expectation or mean of the random variable:

µ = E{x} =

∫ ∞

−∞
xp(x)dx (2.17)

The mean is the most probable value of the random variable, and corresponds
to the value x for which p(x) is maximum.

The nth central moment of x can be defined in terms of the expectation as

ξn = E{(x− µ)n} =

∫ ∞

−∞
(x− µ)np(x)dx (2.18)

The second central moment is called the variance of the random variable:

σ2 = E{(x− µ)2} (2.19)

The variance and its square root, the standard deviation σ, are measures of
the spread of the possible values of x around its mean.

Estimation of Moments

The mean and the variance or standard deviation are the most commonly used
parameters to describe a probability distribution. But, as stated before, the most
common situation in statistics is when we do not know the exact pdf, but have
instead a set of samples4 from the random variable. In this case, the samples
are used to estimate the moments of the distribution using the so called moment
estimators. The estimator for the mean is called the sample mean and is simply
the average value of the observed samples:

µ̂ =
1

N

N∑
j=1

xj (2.20)

where xj are the observed samples and N is the total number of samples. The
hat notation (ˆ) denotes estimation. The estimator for the variance is called the
sample variance and is defined by

4These samples should not be confused with the samples of an audio signal. Throughout
this work, we will write “audio samples” every time the samples of a sound signal are meant,
and just “samples” when values drawn from a random variable or random vector are meant.
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σ̂2 =
1

N

N∑
j=1

(xj − µ̂)2 (2.21)

The sample standard deviation σ̂ is defined as the square root of the sample
variance.

In order to simplify terminology, it is common use to name the sample mean
and the sample variance simply as mean or variance, although actually referring
to its estimations. This simplification will be also adopted in the present work,
since the exact meaning can always be extracted from the context. However, the
subtle differences should be kept in mind.

High-order Statistics

In contrast to the first and second-order moments described above, there are se-
veral possible definitions for the higher order moments that follow. Although the
statistical meaning of these measures is always the same across definitions, their
value range and scaling can vary significantly. In the following, the definitions
used in this work are presented.

The skewness ξ3 of a random variable is defined here as its third central
moment divided by the cube of its standard deviation:

ξ3 =
E{(x− µ)3}

σ3
(2.22)

The skewness is a measure of the asymmetry of the pdf, and equals zero for
densities that are symmetrical about their mean. It is negative if the data is
spread out more to the left of the mean than to the right and positive if the data
is spread out more to the right.

Similarly, the kurtosis ξ4 is defined as the fourth central moment divided by
the fourth power of the standard deviation:

ξ4 =
E{(x− µ)4}

σ4
(2.23)

The kurtosis measures the “nongaussianity” of a random variable, that is,
how far does the form of its pdf differ from that of a normal distribution (see
Sect. 2.3.3). The kurtosis of the normal distribution is 3. If the kurtosis is greater
than 3, the distribution is called supergaussian or leptokurtic. If it is less than
3, it is said to be subgaussian or platykurtic. Supergaussian distributions tend
to have a sharper peak and longer tails than the normal pdf, while subgaussian
distributions tend to be flatter.

As every statistical moment, skewness and kurtosis can be estimated from N
samples by the sample skewness and sample kurtosis defined by:
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ξ̂3 =
1

Nσ̂3

N∑
j=1

(xj − µ̂)3 (2.24)

ξ̂4 =
1

Nσ̂4

N∑
j=1

(xj − µ̂)4 (2.25)

2.3.2 Random Vectors and their Statistical Characteriza-
tion

A D-dimensional random variable can be represented mathematically as a D-
element random vector , that is, a vector whose elements are random variables.
Random vectors are usually defined as column vectors:

x =


x1

x2
...

xD

 = (x1, x2, . . . , xD)T

where T denotes the transpose.
A random vector is fully characterized by its joint probability density function

p(x). The term joint pdf emphasizes that a complete description of a multidi-
mensional random variable must not only account for the statistical behavior of
each of its elements, but also for the relationships between them. In contrast, the
marginal pdfs describe each of the vector elements regarded independently, and
correspond to the pdf s pi(xi) of the constituent random variables.

Vector Moments and their Expectations

As in the one-dimensional case described in the preceding section, the joint pdf of
a random vector can be described partially by its moments. The multidimensional
version of the mean is the mean vector :

µ = E{x} = (E{x1}, E{x2}, . . . , E{xD})T (2.26)

As can be seen, the components of the mean vector are the means of the compo-
nents of the random vector, as defined in Eq. 2.17. Using the same analogy, if N
sample vectors are available, its sample mean vector is given by5

5In this work, the following convention will be used: the total number of dimensions will
be denoted by D, and dimensional indices for the elements of the vectors will be denoted by i.
The total number of samples will be denoted by N , and the sample indices by j.
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µ̂ =
1

N

N∑
j=1

xj (2.27)

The multidimensional counterpart of the variance is the covariance matrix ,
also called autocovariance matrix , given by

Σ = E{(x− µ)(x− µ)T} =

 σ2
1 . . . c1D
...

. . .
...

cD1 . . . σ2
D

 (2.28)

The diagonal components σ2
i are the variances of the components of the vector,

while an off-diagonal element cij is called the covariance of variables xi and xj.
All covariance matrices are symmetric, that is, cij = cji for all i, j.

Covariances measure the degree of correlation between two random variables.
Intuitively, two random variables x1 and x2 are correlated if it is possible to infer
anything about the value of x1 by observing x2, or vice versa. If the variables are
uncorrelated, cij = 0.

It is also possible to interpret the covariance matrix graphically: it describes
the multidimensional spreading of the samples around the point defined by the
mean vector.

The estimator of the covariance matrix is the sample covariance matrix :

Σ̂ =
1

N

N∑
j=1

(xj − µ̂)(xj − µ̂)T (2.29)

2.3.3 The Multivariate Normal Density

The most widely used joint probability function in multidimensional statistics is
the Normal or Gaussian Density , not only because it models accurately many
random experiments, but also because its mathematical simplicity. It generalizes
the well-known one-dimensional normal density. For D dimensions, it is written
as

p(x) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.30)

As it is completely determined by its mean vector and covariance matrix, it
is common to use the notation p(x) ∼ N(µ,Σ) (the number of dimensions is
implicitly indicated by the sizes of the vector or the matrix). In this context, µ
and Σ are called the parameters of the distribution.

Figure 2.3 illustrates a two-dimensional normal density. The left figure is a
three-dimensional representation (p(x) as a function of the constituent random
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variables x1 and x2) of the so-called Gauss bell described by the joint pdf. It can be
seen that the mean vector µ points to the center of the bell. The right figure shows
the corresponding contour plot. Ellipses denote levels of equal probability density
and are always concentric around the mean. All the points on an ellipse have
the same so-called Mahalanobis distance to the center µ. The multidimensional
counterparts of the ellipses are the hyperellipsoids. The form and orientation of
the ellipses or hyperellipsoids with regard to the space axes is determined by
the covariance matrix. A diagonal covariance matrix corresponds to ellipses or
hyperellipsoids whose principal axes are parallel to the space axes. A diagonal
covariance matrix with equal diagonal elements (that is, with equal variances)
corresponds to circles in the two-dimensional case, and to hyperspheres in the
multidimensional case.

Figure 2.3: Three-dimensional (left) and contour plots from a two-dimensional normal
density (from [8]).

2.4 Pattern Recognition

Pattern recognition (PR) or pattern classification can be defined in a broad sense
as “the assignment of a physical object or event to one of several pre-specified
categories”[7]. Human identification of known objects or sounds are examples of
PR acts. The science of mathematical pattern recognition [8, 7, 16, 42, 26] seeks
to formulate mathematically any classification process, its two main motivations
being, first, to gain insight into the biological and psychological processes that
take place in human or animal perception, and second, to allow an automated
implementation of these procedures using computers.
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Any classification application in the context of Content Analysis is based on
the mathematical tools provided by PR theory. In the computer vision field, exis-
ting applications include scanner recognition of printed or handwritten characters
and extraction of objects from complex images. Automatic Speech Recognition is
also a classification process in which a given spoken fragment (be it a sentence, a
word or a phoneme) is classified into a possible transcription. Other applications
include financial predictions, weather forecasts and medical diagnosis. In this
work, PR will be used to classify an audio signal into one of several categories.

One key idea underlying any human or computing PR process is that, in order
to classify an object, there must be some kind of previous knowledge about it.
Any classification relies on a certain decision rule that was derived from previous
experience. For example, we are able to read a given word because at some point
in time, we learned to recognize the patterns that form the characters. Similarly, a
computer must be trained before it can perform any kind of recognition. Any PR
algorithm has a learning or training phase and a classification phase. Regarding
the way in which this training and classification is made, we can distinguish three
different computing PR approaches:

Statistical Pattern Recognition. In this case, the previous knowledge con-
sists of a set of observed samples from the observation object. In the train-
ing phase, a probabilistic decision rule is derived from the samples and is
applied to an unknown object to be recognized in the classification phase.
In a musical analogy, this corresponds to judging the genre of an unknown
piece having heard similar pieces before, which we know belong to that
specific genre. This is the most widely used approach of PR and, as it is
also adopted in the present work, it will be presented in more detail in the
next sections.

Syntactic Pattern Recognition. This approach is used if we have a complete
knowledge about the syntactical or structural rules that form the objects.
Following the same musical analogy, it corresponds to finding musical genre
by detecting certain melodic, harmonic or structural characteristics that we
know are typical for that genre, for example by reading the score or hearing
analytically to the unknown piece. If we have enough previous knowledge of
music theory, it would be theoretically possible to guess the genre correctly
even if we had not listened to any other pieces of the same genre before.
In this case, training consists of implementing these construction rules on
the computer; no training samples are needed. Therefore, classification is
performed using exactly defined heuristic rules, rather than probabilistic
rules.

Neural Pattern Recognition. A set of samples is also available a priori, but
rather than estimating densities from it, they are used as stimuli to train a
neural network . The network is capable of dynamically adapt its decision
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rules based on the samples, until it has reached an optimal separation of
classes.

In the cases where the training is based on a set of samples, another clas-
sification of PR algorithms is possible, this time regarding the amount of prior
knowledge. It can be distinguished between

Supervised Learning. In this case, the classes to which the training samples
belong are known beforehand. In PR jargon it is said that the samples are
labeled. Thus, the recognition algorithm is designed to perform classification
into an initially desired class structure.

Unsupervised Learning is used if the training set is not labeled. In this case,
the separation into classes is up to the algorithm, which groups the samples
according to some measure of similarity. This process is called clustering .

Many possible combinations of the above described methods have been pro-
posed to perform sound classification (see Chapter 3). In this work, a statistical,
supervised approach is used. Unsupervised learning is discarded because the goal
here is to implement a predefined class taxonomy (see Chapter 4). A syntactic
approach is discarded because it would require the music to be in symbolic form,
or to transcribe the raw music data into scores. The main drawback of the Neural
Network approach is that long training time is required, the final performance
being similar to that of statistic approaches [43].

The next sections introduce the principles of statistical pattern recognition.

2.4.1 Feature Vectors and Classifiers

In order to classify an incoming object, some measures or features must be
extracted from it in first place. In pattern recognition, a set of D features
extracted from a sample is represented as a D-dimensional random vector
x = (x1, x2, . . . , xD)T called feature vector or pattern, and the corresponding
D-dimensional vector space is called the feature space. Each sample is repre-
sented as the point in the feature space defined by its feature vector. This is
shown for a two-dimensional case in the scatter plot of Fig. 2.4, where samples
belonging to different classes are marked by different symbols, and separated by
decision boundaries . The regions between boundaries are called decision regions .

Graphically, classifying means to find in which decision region falls a given
feature vector, and assigning to it the class ωk corresponding to that region6.
The goal of pattern recognition is to use the available training samples to find
decision boundaries that separate the classes in an optimal way.

6We will use k for the class index and C for the total number of classes.



CHAPTER 2. BACKGROUND 22

Figure 2.4: Two-dimensional feature space. Samples belonging to different classes are
marked by different symbols. Curves separating classes are the decision boundaries,
which are optimal in this ideal case.

This intuitive idea of classification can be expressed more formally as follows:
given C classes, a set of C discriminant functions gk(x) is defined. Classification
of a feature vector x consists to

Decide ωi if gi(x) > gj(x) for all j 6= i (2.31)

Thus, a classifier can be viewed as an algorithm that evaluates all discrimi-
nant functions for a given feature vector and assigns the class corresponding to
the largest discriminant. The goal of the training phase is to derive this set of
discriminant functions. Many different classifiers have been proposed; some of
them will be discussed later. Equation 2.31 defines the decision rule of a classifier
in its most general form.

The relationship between graphical and analytical interpretations is the fol-
lowing: if the decision regions for classes ωi and ωj are contiguous, the decision
boundary separating them is defined by the equation gi(x) = gj(x).

Figure 2.5 summarizes the concepts introduced in this section.

Figure 2.5: Overview of statistical Pattern Recognition.
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2.4.2 Bayes Decision Theory

As mentioned above, the central problem in statistical pattern recognition is
that of finding the set of discriminant functions for a classifier. The difficulty of
this problem will depend on the amount of information about the classes known
beforehand. The ideal case is that in which the probability structure of the
problem (that is, the probability density function defining each class) is perfectly
known. The Bayes Decision Theory describes the classification problem when
the pdf s are known. Although in practice this is very rarely the case, it is useful
to understand the principles of Bayes classification, as they provide the general
background for the rest of the problems. Also, the Bayes classifier is an optimal
classifier, which means that no other classifier can perform better. Therefore, it
is often taken as a benchmark to compare performance.

The pdf describing each class is written as p(x|ωk), that is, the conditional
pdf of x given the class ωk. This quantity is also called the likelihood of that
class with respect to x.

It should be noted that, in general, some classes in a classification problem are
more probable than others (for example classical music signals are more probable
than rock music signals if our input stream is a classical radio station). Therefore,
each class is also associated with its a priori probability P (ωk)

7.
But what we want to know in order to make a classification is how probable

a class ωk is, given an observation x. This is the so-called a posteriori probability
P (ωk|x), and its relationship to the class likelihood is provided by the Bayes
Rule:

P (ωk|x) =
p(x|ωk)P (ωk)

p(x)
(2.32)

p(x|ωk): Likelihood

P (ωk): A priori probability

P (ωk|x): A posteriori probability

p(x) =
∑C

k=1 p(x|ωk)P (ωk)

As intuition suggests, we will assign to x the class ωk for which the a posteriori
probability is highest, thus obtaining the following decision rule:

Decide ωi if P (ωi|x) > P (ωj|x) for all j 6= i (2.33)

That is, the selected class maximizes the a posteriori probability. Consequently,
this decision rule is called the Maximum A Posteriori (MAP) criterion. The term
p(x) in Eq. 2.32 is only a scale factor and does not affect the decision.

7Lower case ps denote probability densities, while capital Ps denote probabilities, which
always range from 0 to 1.



CHAPTER 2. BACKGROUND 24

When comparing equations 2.31 and 2.33 we conclude that a MAP classifier
is the one whose discriminant functions are given by gk(x) = P (ωk|x).

In many problems, all classes are equally probable a priori. In this case, the
P (ωk) term in Eq. 2.32 is constant for all k and therefore it does not affect the
decision. Thus, with equal priors, maximizing the posterior probabilities is the
same as maximizing the likelihoods, obtaining following rule:

Decide ωi if p(x|ωi) > p(x|ωj) for all j 6= i (2.34)

which is called the Maximum Likelihood (ML) criterion. To decide a class for
a given feature vector, we evaluate each conditional pdf and select the one
that provides a higher value. The discriminant functions of a ML classifier are
gk(x) = p(x|ωk).

In this work it is assumed that all audio classes are equally probable, and
therefore the ML criterion will be used. In this case, if we choose to model
each class by a normal density, the discriminant functions gk(x) have the form of
Eq. 2.30, obtaining a simple Gaussian (GS) classifier. A Gaussian Mixture Model
(GMM) classifier models each class as a linear combination of normal densities,
and it will be reviewed in more detail in Section 7.1.

2.4.3 Maximum Likelihood Estimation

When the exact densities of the classes are not known, which is the most common
situation in pattern recognition, there are two possible ways to perform classifi-
cation: one approach is to estimate the class densities from the training samples
and then applying Bayes Theory to perform classification. The other possibility is
to perform classification based directly on the observed samples without making
any probabilistic estimation. We will address the first way (density estimation)
in the present section, and the second (nonparametric classification) in the next
one.

In the context of density estimation, there are furthermore two possible situ-
ations:

• We do not know the exact density functions, but we do know their form.
For example, we know that the classes are described by normal densities
but we do not know their parameters, that is, their means and covariances.

• We neither know the parameters nor the form of the densities.

In the first case we use one of the parameter estimation techniques to obtain an
approximate model of the classes. The second situation requires the more difficult
problem of estimating the whole density function, and makes use of nonparametric
estimation techniques. Here it will be assumed that the density forms are known
and the most common method for parameter estimation, the Maximum Likelihood
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Estimation (not to be confused with the Maximum Likelihood criterion of the
preceding section), will be introduced.

Formally, we have C different densities p(x|ωk) of a given form, but each
of them having a set of unknown parameters which is represented as the para-
meter vector θk for that class. For example, if the densities are gaussian, then
θk = (µk,Σk).

To denote that the densities are now also dependent on a given set of pa-
rameters, they are now written as p(x|ωk, θk). Assuming that a training set Xk

consisting of N training samples xj is available for a given class ωk, the likelihood
of θk with respect to the set of samples can be written as

p(Xk|θk) =
N∏

j=1

p(xj|ωk, θk) (2.35)

This measures how likely it is that the given samples were drawn from a density
function described by θk. Training by ML parameter estimation consists of find-
ing the parameter vector θ̂k that maximizes the previous expression for a given
class.

In the particular case of a normal distribution, the ML estimation of its mean
is none other than its sample mean µ̂ (Eq. 2.27). The ML estimation of its
covariance is a biased version of its sample covariance matrix Σ̂ (Eq. 2.29). ML
estimation of a gaussian mixture density will be addressed in Sect. 7.1.

2.4.4 Nonparametric Classification

As mentioned in the preceding section, it is also possible to perform classifica-
tion directly based on the training data, without previous density or parameter
estimation. This is called nonparametric classification (not to be confused with
nonparametric density estimation), and its two most important algorithms are
the Nearest Neighbor (NN) classifier and the k-Nearest Neighbor (kNN) classifier.

The very intuitive NN rule consists of assigning to the unlabeled feature vector
the label of the training feature vector that is nearest to it in the feature space.
The distance can be measured using one of several existing metrics, but usually
the Euclidean Distance is used, which is given by

d(x1,x2) =

√√√√ D∑
i=1

(x1,i − x2,i)2 (2.36)

A NN classifier partitions the feature space into decision regions formed by a
set of so-called Voronoi cells . Each training feature vector is surrounded by its
corresponding cell, which is formed by all the points of the feature space that are
nearer to it than to any other feature vector. This is illustrated in Fig. 2.6 for a
two-class and two-feature problem.
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Figure 2.6: Decision regions of a Nearest Neighbor classifier (from [7]). The decision
regions are formed by the Voronoi cells associated to each of the samples, which are
represented by points in the figure.

The kNN rule extends the NN rule by examining the k nearest training sam-
ples to the observed vector. It assigns the label which is most frequent among
these k samples. Usually, choosing moderate values for k improves performance
in comparison with the NN rule, because it yields smoother decision boundaries
and provides more probabilistic information. However, large values for k can be
detrimental, not only because the increased computation complexity, but because
it would destroy the locality of the estimation by considering samples that are
too far away.

It can be shown that a kNN classifier will never perform worse than twice the
error rate achieved by a Bayes classifier [8].

From a computational point of view, a kNN classifier8 requires to store all
feature vectors of the training database in order for the input vector to be com-
pared with each of them. In contrast, density-estimation-based classifiers, such
as a GS or a GMM, need only to compute and store the C parameter vectors θk,
making them more computationally efficient at classification time. kNNs require
no training time, as long as all feature vectors have alredy been computed and
stored.

2.4.5 The Design Process of a Pattern Classifier

Figure 2.7 shows the whole design process of a classifier. As the first step, a
database of training samples must be collected. Then, it must be decided which

8The NN classifier will always be considered as a particular case of the kNN classifier.
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Figure 2.7: Design cycle of a classifier (adapted from [7]).

features will be extracted to perform the classification. Choosing appropriate
features, or designing new ones must be made very carefully, as it will highly
affect the overall performance.

Feature design is said to be the domain-dependent part of classifier design,
meaning that it requires an in-depth knowledge of the specific field of applica-
tion. On the other hand, classification algorithms regard input data as a set
of numbers, without any knowledge about their true nature. Therefore, choos-
ing the classifier model is the domain-independent part. Due to its generality
and domain independence, classifier algorithms have been thoroughly discussed
in the literature as general purpose, abstract tools that can be applied to any
input data. In contrast, feature design, and especially audio feature design, has
received little attention up to now.

Once the features and the classifier have been chosen, the latter must be
trained using the collected data. At this point we have reached a complete work-
ing system and we are ready to evaluate its performance. However, as it is shown
in the figure, backward modifications on any of the previous stages can be made
observing the feedback provided by the evaluation.

This outline is closely followed in this work. The selection of features, as well
as the design of new ones will be described in Chapters 5 and 6. In Chapter 7,
several classification algorithms will be evaluated, not only with regard to their
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correct classification rate, but also considering other properties like computational
performance and flexibility. These considerations led to the selection of one of
the models, which was implemented in the final prototype tool.

The designer of a classifier must confront problems inherent to pattern recog-
nition that often defy intuition. The most important of these issues are the
problem of overfitting and the problem of high dimensionality.

Overfitting. Intuition suggests that it is desirable to have as many training
samples available as possible. However, if we fit the decision rules too closely
on the training data, the classifier will perform badly on new, unknown
data. This idea is shown in Fig. 2.8. In Fig. 2.8(a), the obtained boundary
perfectly separates the training samples, but will not work well on new
samples. The boundary in Fig. 2.8(b) missclassifies some training data,
but is expected to reflect the statistical behavior of data more accurately,
and consequently will give a better overall performance. As a result, there
is an optimal number of training samples upon which the performance will
begin to decrease. The higher the underlying complexity of the data is, the
higher is this optimal number of samples.

(a) Perfectly fit boundary (b) Generalized boundary

Figure 2.8: Illustration of the problem of overfitting. Figure 2.8(a) shows an overfitted
decision boundary, while Fig. 2.8(b) shows a generalized decision boundary.

High Dimensionality. Similarly, one could expect that adding new features
(that is, new dimensions) will always help improving the correct classifi-
cation rate, even if the new features add few discriminating information.
Practice has shown that this is not always the case. This apparent paradox,
which has been called the Curse of Dimensionality , has attracted the atten-
tion of statisticians since many years, and there have been many attempts
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to proof theoretically what has been observed in practice. This has impor-
tant implications for the application-oriented designer, too, since reducing
the number of features allows to reduce computational costs while keeping
similar classification performance. In some cases, the classification rate can
even benefit from the reduction in dimensionality. For these reasons, many
dimensionality reduction methods have been proposed in the literature (see
Sect. 6.2).

Furthermore, these two issues are closely related, as the optimal number of
features closely depends on the number of available samples. Both can be re-
garded as particular implications of the general scientific and philosophical prin-
ciple of Occam´s razor , which states that one should not increase, beyond what
is necessary, the number of entities required to explain anything.

These problems and their implications in the specific audio application de-
scribed in this work, will be addressed in Chapters 6 and 7.



Chapter 3

Related Work

Research projects about general audio classification have only begun in the last
few years. Although ASR systems can also be viewed as classification systems,
they will not be reviewed here, as we will restrict our discussion to general,
categorical classification.

3.1 Overview of Audio Classification Systems

In the present overview, only systems based on supervised learning techniques
will be considered. Such systems allow the implementation of a given taxonomy
defined beforehand by the user or by the implementation itself, and therefore
correspond to the scope of this work. Some music clustering systems based on
unsupervised learning have also been proposed [11, 34, 15, 31], but will not be
regarded here.

The following works will be reviewed in chronological order.

Wold, Blum, Keislar and Wheaton (1996)

One of the first general audio classification systems was developed by the Muscle
Fish company in 1996 [48]. In this system there are no pre-specified classes, since
the training is up to the user. Pitch, brightness modeled by the spectral cen-
troid (Sect. 5.3.2), spread (Sect. 5.3.6.2) and mel frequency cepstral coefficients
(MFCCs, Sect. 5.3.5) are used as the features. The system uses a simple gaussian
(GS) classifier, and its main application is similarity retrieval. It has been tested
using short, individual sound segments such as sound effects and musical instru-
ment notes, which train very specific classes like laughter, animals, bells, crowds,
water, etc. To our knowledge, is has not been tested using broader classes like
musical genres.

30
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Scheirer and Slaney (1997)

Another key application in audio classification is the discrimination between
speech and music. A system proposed by Scheirer and Slaney [35] uses 13 fea-
tures such as 4Hz modulation energy, rolloff (Sect. 5.3.3), centroid, flux (Sect.
5.3.4), zero crossings (Sect. 5.3.1) and beat features to distinguish between speech
and music. Four different classifiers were evaluated: a GS classifier, a gaussian
mixture model (GMM, see Sect. 7.1), a nearest neighbor (NN) classifier and a
k-nearest neighbor (kNN) classifier. The four provided very similar classification
performance. A final classification rate of 98.6% is reported. When using the sys-
tem as a three-way classifier to separate music, speech and simultaneous speech
and music, the rate drops to 65%.

Foote (1997)

Foote [12] proposed a tree-based quantizer as the classifier. This tree partitions
the feature space into regions with feature vectors belonging to maximally differ-
ent classes. MFCC coefficients are used as the features. A three-way classification
between speech, music and non-vocal sound is implemented using this technique.
No specific performance measures are provided in this paper.

Zhang and Kuo (1998)

Zhang and Kuo [50, 49] have developed a system that performs classification in
a two-level hierarchy. At the first level, which they call the coarse-level, sound is
classified into speech, music, environmental sound and silence using a model-free
heuristic procedure. That is, there are no statistical rules derived from a density
estimation, but a decision based on empirically obtained thresholds for each fea-
ture. The features used at this stage are the short-time energy, the zero crossings
and the fundamental frequency. A classification accuracy of 90% is reported for
the coarse level. At the second stage, or fine-level classification, sounds are further
divided into finer classes. The work focuses on the classification of environmental
sounds into 10 classes such as applause, birds, laugh, rain, etc. At this stage, the
classification is based on modeling each class as a Hidden Markov Model (HMM).
In contrast to the already reviewed statistical classifiers, such as the GS, GMM
and kNN classifiers, a Hidden Markov Model accounts for the time-varying nature
of features representing each class as a set of density functions with transition
probabilities between them. Particularly, in this work, each state of the HMM is
modelled by a GMM density. The spectrum coefficients are used directly as the
fine-level feature, but its transitions across the HMM implicitly contain informa-
tion about the rhythmic structure of the signal. At this level, an accuracy of 80%
is reported.
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Lambrou, Kudumakis, Speller, Sandler and Linney (1998)

In a work by Lambrou et al. [21] statistic measures such as mean, variance,
skewness and kurtosis from the wavelet transform coefficients of the signal and
the zero crossings are used as the features. Classification into three musical
classes (rock, piano and jazz) is evaluated with a kNN classifier, and with three
variations of the GS classifier. A classification accuracy of 91.67% is reported.
However, since only 12 audio examples were used for training (4 for each class),
it is questionable if this value is really representative for the overall performance
of the system.

Soltau, Schultz, Westphal and Waibel (1998)

Soltau et al. [39] constructed a prototype system for classifying music into rock,
pop, techno and classic. As it is stated in this paper, the major drawback of
HMMs is their poor discriminative power, and therefore another temporal struc-
ture modeling technique based on neural networks, which achieve better discrim-
ination, is presented. It is called Explicit Time Modeling with Neural Networks
(ETM-NN). The features used are the activations of the hidden units of the neu-
ral networks. The ETM-NN approach achieved a classification rate of 86.1%,
compared to the 79.2% achieved by the HMMs.

Pye (2000)

Pye [33] addresses classification of audio signals compressed in MP3 format. Two
approaches are compared with respect to performance and computation cost. In
the first, MFCCs are used as the features, which requires the previous MP3 de-
compression. The other proposed method consists of deriving a MFCC-like set of
features performing only a partial decompression, and is called MP3CEP. GMM
and a tree-based vector quantizer like the one used in [12] are the evaluated clas-
sifiers. Music classification is performed into the following 6 classes: blues, easy
listening, classical, opera, dance (techno) and indie rock. The best classification
rate for both the MFCC and MP3CEP was obtained using the GMM classifier.
While MFCCs performed slightly better (92%) than MP3CEP (90.9%), in the
latter case the computation was more than five times faster.

El-Maleh, Klein, Petrucci and Kabal (2000)

In a 2000 work by El-Maleh et al. [9] a speech/music discriminator is described us-
ing the Line Spectral Frequencies (LSF) in combination with zero-crossing based
measures as the features. LSF is the result of applying a certain linear transfor-
mation to the Linear Prediction (LP) coefficients (see Sect. 5.5.6). A GS and
a NN classifier are evaluated. The best classification rate (95.9%) was obtained
with the GS classifier.
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Deshpande, Nam and Singh (2001)

In Deshpande et al. [6], the MUGEC (Music Genre Classification) project is
presented. Here, music is classified into rock, classical and jazz. The spectral
coefficients and the MFCCs are chosen to describe the signals. But rather than
directly using these values for the classification, the feature vectors are extracted
from the two-dimensional graphical representations of the features by making
use of an image classification technique called the texture-of-textures approach.
Three different classifiers were evaluated: kNN, GS and a Support Vector Machine
(SVM) algorithm (SVMs project the data into a higher dimensional feature space
and try to find linear discriminant functions in that space). The best performance
(75%) was achieved with the kNN classifier. Another interesting conclusion from
this work is that a simple gaussian pdf seems to model the distribution of classical
music feature vectors with a reasonable accuracy, while giving poor results in the
case of rock and jazz.

Casey (2002)

The system described by Casey [5, 25] is intended for audio classification and
retrieval in a generalized way. That is, similarly to the Muscle Fish system, the
definition and training of all classes is made by the user. The feature vectors are
obtained from a compact representation of the spectrum using Singular Value
Decomposition (SVD). The explicit time-modeling approach is also used here,
in this case using HMMs like in Zhang and Kuo [50]. Each state is modeled
as a GS distribution. This approach has mainly been tested in classifying envi-
ronmental and single-instrument sounds. Also, a performance test in classifying
music into Bluegrass, Reggae, Rap, Folk, Blues, Country, Gospel and New Age
obtaining a classification accuracy of 95.4% is reported. Unfortunately, there is
no indication of the number of training and test samples used for the evaluation,
making a performance comparison impracticable. This system has been adopted
by the MPEG-7 standard as one of its high-level audio tools: the General Sound
Recognition and Indexing tool (see next section).

Tzanetakis and Cook (2002)

The most elaborate music hierarchy among the papers reviewed here can be found
in Tzanetakis and Cook [45, 44]. Music signals are divided into classical, country,
disco, Hip-Hop, jazz, rock, blues, reggae, pop and metal. Classical music is further
divided into choir, orchestra, piano and string quartet. Jazz is further divided
into Big Band, Cool, Fusion, piano, quartet and Swing. The musical hierarchy
is extended by introducing a previous music/speech discriminator similar to the
one implemented by Scheirer and Slaney [35]. Speech signals are further divided
into male speech, female speech and speech with noisy background. The authors
divide the used features into three groups: timbral texture, rhythmic content
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and pitch content features. Timbral features include centroid, rolloff, flux, zero
crossings and MFCCs. Rhythm and pitch features are based on the file-based
computation of the beat and pitch histograms, respectively (see Sect. 5.4.1). The
GS, GMM and kNN classifiers were evaluated. The performance percentages
given in this work are independent of the previous classification stages in the
musical tree. That is, the performance in classifying into the Jazz subgenres is
evaluated assuming all the input signals are Jazz examples, the same applying to
the speech, music and classical subdivisions. These rates are the following:

• Music vs. Speech: 86%

• Speech classes (3): 74%

• Music genres (10): 61%

• Classical subgenres (4): 88%

• Jazz subgenres (6): 68%

In the three musical classifications, the best performance was achieved using
the GMM classifier with 3 gaussian components per mixture. The above rates
correspond to a file-based classification in which one feature vector is computed
for each file using mean and variance as subfeatures (see Sect. 5.1.1). The
classification into the 10 musical genres was also tested in real-time mode, hence
using only the timbral features, and yielding a 44% correct classification rate.

Lu, Zhang and Jiang (2002)

In Lu et al. [24], audio is labeled as speech, music, environment sound and silence,
achieving an accuracy of 96.51%. Classification is made in two steps. At the first,
it is distinguished between speech and nonspeech signals using a combination of
a kNN classifier based on zero-crossings, flux and energy features, and a set of
heuristic rules based on a linear-prediction-related feature called Linear Spectral
Pairs (LSP). At the second stage, nonspeech is classified into music, environment
or silence by a set of heuristic rules based on flux, the ratio of noisy frames, and a
periodicity measure based on the autocorrelation, similar to the Harmonic Ratio
defined in MPEG-7 (see Sect. 5.3.6.4).

Jiang, Lu, Zhang, Tao and Cai (2002)

In this paper [20], a feature called Spectral Contrast (SC) is proposed as an
improvement of the MFCCs. While the MFCCs represent the average form of
the spectrum (see Sect. 5.3.5), SCF describes the relative strengths of its peaks
and valleys within a set of subbands. An accuracy of 82.3% was achieved by
using a GMM to classify into following 5 musical classes: baroque, romantic, pop
songs, jazz and rock, compared with 78% reached with the MFCCs.
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The systems reviewed in this section are summarized in the following two
tables. Table 3.1 shows the speech/music and speech/music/background dis-
criminators. Table 3.2 lists the systems with more classes, most of them musical
genres. The given classification rates are not directly comparable since they
closely depend on the number of classes considered in the system, the number
of samples used for training and testing, and the particular evaluation method
used. For this reason, all these values are also listed here.

Author Year Speech
classes

Music
classes

Other
classes

Traing sam-
ples per class

Test
samples

Classification
rate

Scheirer et al. 1997 1 1 0 72 16 98.6%
Scheirer et al. 1997 1 1 1 72 24 65%
Zhang et al. 1998 1 1 1 6-8 50 90%

El-Maleh et al. 2000 1 1 0 ? ? 95.9%
Lu et al. 2002 1 1 1 ? ? 96.51%

Table 3.1: Overview of existing music/speech(/background) discriminators.

Author Year Speech
classes

Music
classes

Other
classes

Traing sam-
ples per class

Test
samples

Classification
rate

Zhang et al. 1998 1 1 10 6-8 50 80%
Lambrou et al. 1998 0 3 0 4 ? 91.67%
Soltau et al. 1998 0 4 0 60 18 86.1%

Pye 2000 0 6 0 ? 175 92%
Deshpande et al. 2001 0 3 0 35 17 75%

Casey 2002 0 8 0 ? ? 95.4%
Tzanetakis et al. 2002 0 10 0 100 ? 61%

Jiang et al. 2002 0 5 0 1000 1250 82.3%

Table 3.2: Overview of existing multi-class audio classification systems. It should
be noted that the given classification rates are not directly comparable because they
highly depend on the number of classes and training samples. For these reasons, these
numbers are also explicitly given here.

3.2 The MPEG-7 Standard

One proof of the increasing significance of information retrieval nowadays is that
there already exists an international standard defining a set of techniques for an-
alyzing and describing raw data. Unlike the previous published standards by the
MPEG1 Group (MPEG-1, MPEG-2 and MPEG-4), the new MPEG-7 standard

1Moving Picture Experts Group
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[25] does not deal with the compression of bit streams, but with its content-based
description. MPEG-7, officially called ISO/IEC 15938 ”Multimedia content de-
scription interface”, started in 1997 as an attempt to facilitate the access and
management of the huge amount of digital information that the previous com-
pression standards had made available, most of all through the Internet.

The main objectives of MPEG-7 is to standardize feature extraction for any
type of digital data and to define a language that describes this data in terms of its
features. In MPEG-7 terminology, a feature is represented by a descriptor, and
the language describing the data is called the Descriptor Definition Language
(DDL). A certain data object, such as an image, an audio file or a movie, is
represented by a Description Scheme, which defines the relationships between
the individual descriptors that make up the data, or between different description
schemes. The DDL, which is an extension of the XML2 language, also allows to
create new description schemes and new descriptors, making MPEG-7 a highly
flexible and easily upgradable standard.

Of most interest for this work are the audio descriptors defined in Part 4 of
the standard [1]. As it will be described in Chapter 5, a number of MPEG-7
descriptors have been evaluated as possible features for audio type classification.
Here, the main organization of audio description tools within MPEG-7 will be
reviewed, while in Chapter 5, the detailed definition and implementation of the
selected descriptors will be addressed.

The standard distinguishes between low-level and high-level audio description
tools. The low-level tools are called the Audio Framework and consist of generic
descriptions applicable to any kind of audio data. The audio framework consists
of the Low-Level Descriptors (LLD), which define the extracted audio features,
the Scalable Series , which define data types for performing downsampling of
series of descriptors, and the Silence Description, which specifies the segment to
represent silence.

The high-level tools are application-specific, and are implemented as descrip-
tion schemes using the low-level audio framework. Examples include instrumental
timbre description, audio signature tools, melody description tools and general
sound recognition and indexing tools.

The described audio tools hierarchy is summarized as follows:

• Audio Framework

– Low-Level Descriptors

– Scalable Series

– Silence Segment

• High-Level Tools

2Extensible Markup Language
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– Audio Signature

– Instrumental Timbre

– General Sound Recognition and Indexing

– Spoken Content

– Melody Description

3.2.1 MPEG-7 Low-Level Audio Descriptors

A total of 17 time and frequency-domain low-level audio descriptors are defined
within the audio framework. They can be classified as follows [25]:

• Basic: Time-domain amplitude and power.

• Basic Spectral: Power spectrum and spectrum-related features, such as
spectral centroid, spectral spread and spectral flatness.

• Signal Parameters: Fundamental frequency and harmonicity.

• Temporal Timbral: Attack time and temporal centroid.

• Spectral Timbral: Several spectral measures related to the harmonic com-
ponents.

• Spectral Basis Representations: Compact representation of a spectrum as
a set of basis functions and its projections.

The temporal timbral and spectral timbral descriptors, as well as the fun-
damental frequency, are features designed to be computed only on segments of
monophonic3 sounds, as needed for example in the high-level tools for instrumen-
tal timbre description. Particularly, the spectral timbral descriptors are based
on a previous estimation of the harmonic components of the spectrum, which is
in turn based on an estimation of the fundamental frequency. Therefore, this
features are not suitable to describe complex sounds like polyphonic music.

In contrast, the rest of the descriptors are applicable to any kind of audio. The
harmonicity descriptor measures the harmonic content of the spectrum without
having estimated the fundamental frequency (see Sect. 5.3.6.4), and is therefore
also appropriate for complex signals.

In this work, four features out of this set have been selected for performance
evaluation in the classification task. The argumentation behind this decision will
be discussed in Sect. 5.3.6.

3Monophonic in the musical sense (that is, single-voiced), not in the recording sense (single-
tracked).
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An audio descriptor can either be of scalar type (that is, one value per frame;
for example, instantaneous power or spectral centroid) or of vector type (that
is, more that one value per frame, such as spectra or spectral basis representa-
tions). In MPEG-7, two specific data types for audio descriptors are specified:
AudioLLDScalarType for scalar values and AudioLLDVectorType for vector val-
ues, which are correspondingly inherited by the LLDs.

To complete this overview of MPEG-7 terminology, it will be mentioned that
what in this work is called step length, as shown in Fig. 2.1, corresponds to the
hopSize in the standard. It is consequently the rate at which a new value for a
descriptor is computed. The default hopSize has been chosen to be 10ms. LLDs
use either the hopSize or an integer multiple thereof as the update interval. The
terms analysis window and FFT length are used in both the standard and this
work with the same meaning.



Chapter 4

Creating the Audio Taxonomy

Although the main focus of the present work is the classification into musical
subgenres, a preliminary classification into speech, music and background noise
has been implemented and evaluated. By background noise we refer to any kind
of non-speech and non-musical sound, such as environmental sounds (traffic, in-
dustry, country, forest, rain), animal sounds, or other non-speech human sounds
(laughter, crowds, applause, etc.).

Speech is further divided into male speech, female speech and speech with
background or noise. This last class is intended to comprise any kind of male
or female speech mixed with music, such as a radio or TV commercial or a
commentated music program; or with background noise, such as a radio play, a
movie soundtrack or any kind of sports program. Children speech is not explicitly
considered, although the system is likely to classify it as female speech.

The above class definitions are straightforward, since they rely on completely
objective criteria. However, when it comes to music, many problems arise. Rather
than consisting on a set of objective rules, musical genres are the result of a
combination of not only musicological, but also social, historical, cultural and
even economical factors. One of the main difficulties in designing an automated
music classifier is to find to what extent is it possible to reduce all these aspects
to a set of objective descriptions which can be interpreted by a computer. This
issue is discussed in the present Chapter.

4.1 Musicological Considerations

In the audio classification systems described in the preceding section, many dif-
ferent music taxonomies1 have been used. Examples of them are:

• Rock / Piano / Jazz (Lambrou et al. [21])

1Taxonomy is the branch of science concerned with classification, or a scheme of classification
(definition of the Oxford English Dictionary).

39



CHAPTER 4. CREATING THE AUDIO TAXONOMY 40

• Rock / Pop / Techno / Classical (Soltau et al. [39])

• Blues / Easy Listening / Classical / Opera / Dance / Indie Rock (Pye [33])

• Bluegrass / Reggae / Rap / Folk / Blues / Country / Gospel / New Age
(Casey [5])

• Baroque / Romantic / Pop Songs / Jazz / Rock (Jiang et al. [20])

• Classical / Country / Disco / Hip-Hop / Jazz / Rock / Blues / Reggae /
Pop / Metal (Tzanetakis et al. [44])

Some of them may serve well in demonstrating the system capabilities, but
are not likely to be useful in a final user-oriented application, since they are often
incomplete or musicologically inconsistent [3]. An example of incompleteness
is the absence of classical music in Lambrou [21] or Casey [5]. Musicologically
inconsistent is, for example, the distinction between classical and opera or the
choice of Indie Rock or Metal instead of the more general category of Rock in Pye
[33] and Tzanetakis [44], respectively. Another incoherence is the fact that, at
the same classification level, some classes are defined according to their musical
genre and others according to their instrumentation, such as the Piano class in
Lambrou [21] or the Quartet and Piano jazz subgenres in Tzanetakis [44].

For an automatic classification system, taxonomies should be constructed
according to criteria as objective as possible. In Pachet and Cazaly [30] an
attempt on building a universal, objective musical taxonomy is presented. Each
of the 378 genres is differentiated from the others by a set of objective properties
such as tempo, rhythm and instrumentation. For example, Funky Music is defined
as the particular subgenre of Rhythm and Blues with massive presence of funk
guitar and bass, and Rhythm and Blues is in turn defined as the particular
subgenre of Blues with massive presence of brass instruments.

Although such objective, reduced descriptions may work well in defining broad
music categories, one can figure out the difficulties they will present in the con-
text of the most specific subgenres of the class tree. In fact, the same authors
admit in a later paper the huge complications of such an approach, reducing their
ambitions to a much simpler taxonomy [3].

But even in the case in which such a sophisticated set of purely objective rules
would succeed in describing the differences between genres, it could not be di-
rectly implemented to perform automatic classification, since it would require the
extraction of very complex and high-level features, a task that is still unfeasible.

For all the above reasons, a special effort was made in this work to find an
audio taxonomy that would be at the same time:

• simple enough to allow class separation by feasible features
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• complete enough to allow an acceptable classification of as much input
signal types as possible, and

• musicological consistent to avoid ill-defined classes.

The first question that arises in creating the musical taxonomy is how to
define the highest genres in the hierarchy. Perhaps the broadest genres that
can be defined would correspond to the music of the different cultures, that is,
western music, Chinese music, Indian music, etc. Our preliminary assumption is
that only western music will be considered2.

At the next stage, it is common use to distinguish between classical and
popular music, in our case between western classical and western popular music.
Although the term “classical music” is in its origin rather inappropriate, there is
a generalized consensus about its meaning. However, the term “popular music”
is much more polemical. On the one hand, it can be confused with the term
“pop music”, which designates a more specific subgenre. On the other hand,
there are several genres that do not fit into the idea of popular music as music
intended for massive consume; the most paradigmatic of these genres is jazz. In
other languages there are other solutions to defining all that is not classical, like
the terms “U-Musik” (entertainment music) in German or “música ligera” (light
music) in Spanish, which are also at least as much questionable. We considered
the term “drum-set-based music”, since virtually all popular and jazz music is
based on a rhythmic section, but discarded it to allow a complete generality. In
the lack of better terms, we opted for the most diplomatic solution and called it
just “non-classical music”.

In contrast to non-classical music, which is usually classified according to
stylistic genres that are nearly parallel in history (like rock, pop, rap, jazz, etc.),
western classical music is often separated in sequential historical periods (me-
dieval, renaissance, baroque, classic, romantic and contemporary). This would
constitute a serious problem for an audio classifier, since it would require high-
level features capable of distinguishing a classical string quartet by Haydn from
a romantic string quartet by Brahms, or of classifying an early symphony by
Beethoven as classical even if it was conducted by a romantic-inclined conductor.

For these reasons, it was decided to divide classical music according to in-
strumentation, not to historical period, which is also common practice in many
market-related taxonomies. Following this approach, it was straightforward to
divide chamber music3 and orchestral music at the next level. Orchestral music

2However, it should be kept in mind that western classical genres like baroque, romantic, etc.
and western popular genres like rock, pop, etc. are only a special case among many other types
of classical and popular music in the world, which is often unfairly ignored as a consequence of
their ubiquitous presence in the media.

3Chamber music is classical music written for a reduced number of performers in which each
voice or group of voices is played by a single instrument. In contrast, in orchestral music, some
voices are played by a group of instruments, like the string section of an orchestra.
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comprises symphonic music (music with “only” orchestra), choral music (orches-
tra with choir) and music with orchestra and soloist (for example, concertos).
Opera can fall into any of these three classes, depending on if the corresponding
excerpt is instrumental (overtures, interludes), choral, or a soloist part (arias,
duets, etc.).

Although there is a huge variety of chamber music ensembles, it is possible
to group them into a few genres by considering the most important chamber
ensembles (all chamber ensembles with piano and string quartets) as independent
classes and defining an additional “other chamber ensembles” group. Due to its
similarity, unusual variations to the string quartet such as string trios or string
quintets are also intended to be a part of the string quartet class. Solo music4 has
been considered here as a chamber subgenre as well, since it fits into the above
definition of chamber music.

In contrast to classical music, instrumentation is not a good criterium to sep-
arate non-classical genres like rock, pop and jazz, since they almost invariably
follow the same scheme consisting of a rhythm section (drums and bass), an ac-
companiment section (usually keyboards or guitars) and a lead section (vocals
and solos). Differences point mainly to rhythm structure, timbral variations of
the instruments and singing character. Besides, non-classical music is organized
attending to style in virtually all music labels, shops or on-line taxonomies. The
main problem in this case consists of finding the broadest classes for non-classical
music. We have chosen a three-way partition into rock, pop and jazz, believing
that, in a broad view, they can comprise the vast majority of non-classical vari-
eties. The definitions of rock, pop and jazz used here should be understood in
their broadest possible interpretations.

While jazz is easier to separate, distinguishing between pop and rock is a far
more problematic issue. Many audio taxonomies take the short way and avoid
this problem by simply defining a pop/rock class. However, we believe that there
are enough differentiating properties to separate them.

We understand rock as having a tendency to the ample use of guitars, both
distorted or clean, and to be related to blues in musical form and in character. We
divide rock into soft rock and hard rock. Soft rock tends to the use of undistorted
guitars and soft vocals. Hard rock is characterized by high distorted guitars, more
powerful drums and a more energetic way of singing.

In contrast, pop tends to the use of synthetic sounds, relegating guitars to
a secondary role and resulting often in a brighter timbre. The vast majority of
pop subgenres are decidedly dance-related. To emphasize that synthetic sounds
play a key role in our definition of pop, and to make a wide interpretation of
this class possible, we have called it “electronic/pop”. We define as subclasses
techno/dance, rap/hip-hop and a class comprising other pop subgenres, labeled

4Solo music is played by a single instrument, which can be monophonic, like a flute or a
clarinet, or polyphonic, like a piano or a guitar.
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just as “pop”.
The resulting audio taxonomy is illustrated in Fig. 4.1.

4.2 Questionnaire about Musical Genres

The taxonomy described above certainly fulfills the condition of simplicity, but
it is questionable to what extent it also accounts for generality. Separation of
classical types posed no serious problems, as we based our classification on the
instrumentation. However, non-classical genres are inherently defined in a much
more fuzzy manner.

In spite of our belief that a very high number of musical examples could fit into
one of the classes of our non-classical taxonomy, there are some particular genres
for which this assumption was difficult to hold. This is the case, for example, of
reggae, funk, country, folk, etc. To examine to what extent this dubious classes
could fit into the proposed taxonomy, a small field study was carried out as
follows:

17 musical examples belonging to one of the dubious classes were selected and
reduced to 15-second excerpts. They were collected in a web page and subjected
to an on-line questionnaire consisting of the following two questions:

1. Into which of the following genres would you classify the current excerpt:
Rock, Pop or Jazz? Even if you think the example does not fit at all into
one of these three categories, try to decide in which of them would the
classification be more acceptable.

2. Without taking into account the previous constraint, how would you classify
the excerpt? Write in the text field a genre or subgenre that you think is
appropriate.

A total number of 75 replies were received. The results confirm the very
fuzzy nature and the many different interpretations of non-classical music genres.
We initially intended to consider country as a special case of soft rock, and ska,
reggae and funk as special cases of pop. The results of the study showed this was a
rather inappropriate generalization, and suggested to regard the mentioned genres
as independent classes in future expansions of the taxonomy. As a consequence,
all the funk, ska, reggae and country examples that were initially present in the
training database were discarded and replaced with examples belonging to one of
the more undisputed genres. Some remarkable results are outlined in Table 4.1.
They show how different the criteria are when it comes to assign a broad class to
a well-defined genre such as reggae or country.

Another interesting conclusion was the inconsistency of some commonly used
genres such as “alternative” or “independent”, which were often proposed to
describe very different kinds of examples. The complete results of the test are
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Figure 4.1: Audio taxonomy.
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Example Rock Pop Jazz
Reggae 25.4 % 50.7 % 23.9%

Ska 46.6 % 49.3 % 4.1%
Country 30.1 % 43.8 % 26.1%

Funk 41.9 % 16.2 % 41.9%

Table 4.1: Selected results from the musical questionnaire. Rows correspond to indi-
vidual reggae, ska, country and funk examples. Columns indicate the precentage of test
subjects that proposed one of the rock, pop or jazz classes as possible father genres.
For the complete results, see Appendix B.

given in Appendix B, together with the results of classifying these ambiguous
examples with the end application that resulted from this work. The music
examples used in the questionnaire are included on the enclosed CD-ROM (see
Appendix C).

Following the considerations discussed in the preceding section, and the results
of the questionnaire, we can outline the intended contents of each class of the
taxonomy as indicated in table 4.2.

It should be noted that the most specific subgenres listed in this table reflect
the line of argument in the creation of the taxonomy, and indicate the classes in
which an input signal of that subgenre should ideally fall. They do not necessarily
mean that all of them are represented in our audio training database.

Some examples of genres that are not intended to fit into this work’s taxonomy
are the following:

• A capella choral music (only choir)

• Wind bands (concert bands, marching bands)

• Electronic contemporary classical music

• Non-western classical music (such as Indian or Chinese classical music)

• Traditional and ethnic music (traditional Celtic music, flamenco, gamelan)

• Tradition and ethnic-related popular music (folk, salsa, tango, world music)

• Other popular genres: funk, reggae, ska, country, soul

Of course, the above genres can constitute the basis for future expansions of
the taxonomy.
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Class Comprised subclasses Representative examples
Speech

Male speech male speech
Female speech female speech
Speech with background speech with background noise,

speech with background music
movie soundtracks, TV
commercials, sports pro-
gramms, radio plays

Chamber music
Chamber music with piano piano trios, piano quartets, pi-

ano quintets, sonatas with piano,
lieder

Solo music solo sonatas, suites, partitas,
miscellaneous solo pieces

String quartet string quartet, string trio, string
quintet, string sextet

Other chamber ensembles triosonatas, clarinet quintet,
wind quartet, septet, octet,
opera recitatives, miscellaneous
chamber groups

Orchestral music
Symphonic music symphonies, overtures, sym-

phonic poems, suites
Choral music choral passages in operas, orato-

rios, symphonies
Orchestra with soloist concertos, orchestral lieder,

opera arias, opera duets
Rock

Hard Rock Hard Rock, Heavy Metal, Punk,
Grunge, Hardcore

Led Zeppelin, Metallica,
Nirvana, Korn

Soft Rock Rock ’n’ Roll, Rhythm ’n’ Blues,
Pop-Rock

Chuck Berry, The Beatles,
Dire Straits, Oasis

Electronic/Pop
Techno / Dance Techno, Dance, House, Disco
Rap / Hip-Hop Rap, Hip-Hop M.C. Hammer, Cypress

Hill, Eminem
Pop Pop ABBA, Michael Jackson,

Madonna, Prince
Jazz/Blues

Jazz/Blues Jazz, Blues Duke Ellington, Miles
Davis, B.B. King

Background
Background environmental sounds, animal

sounds, human non-speech
sounds

Table 4.2: Taxonomy classes and intended comprising subclasses.
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4.3 Human Performance in Classifying Music

The observations in this Chapter have made clear that musical genres are of an
inherently fuzzy nature, and that they are understood in many different ways
across individuals. The difficulties in designing an automatic music classification
system lie not only in the subjective characterization of the genres, but also in
how it can meet the expectations of a wide range of users with different opinions
about musical categories.

Human classification of music has been very little studied. Its in-depth inves-
tigation can provide useful results in finding to what extent is automatic classifi-
cation possible. In a work by Soltau [38], a group of 37 test subjects are asked to
classify a number of 3-second audio examples into rock, pop, techno and classic.
The same samples were used to test the automatic classification system based on
neural networks that was shortly described in the previous Chapter [39]. Both
results were similar, not only in the total classification rate (86.1%), but also in
the individual confusions between genres. It was found that both the test sub-
jects and the system found most difficult to separate rock from pop. Only around
72% of the rock samples were correctly classified by both the system and by the
test subjects.

In Perrot and Gjerdigen [32], college students were asked to classify short
excerpts into one of the following ten classes: blues, country, classical, dance,
jazz, latin, pop, rhythm ’n’ blues, rap and rock. Two experiments were carried
out, one using excerpts only 250ms long, and the other with 3-second excerpts.
Reported final accuracies are 53% for the 250ms samples and 70% for the 3s
samples. Listening to more than 3 seconds did not improve the performance.

Results such as these have led researchers to put in question the feasibility of
a high-accuracy automatic classification system. After all, any automatic classi-
fication system relies on a set of training examples that were previously labeled
and classified by a human. Consequently, can the resulting system classify better
than its human trainer?

Perhaps the only possible answer to this is in turn another question: what
does “classify better” exactly mean? It has been stated that current audio clas-
sification technologies have reached the performance levels of human music clas-
sification [44]. But, should the systems really be compared with experiments
in which the test subjects were randomly selected, with probably very different
musical habits and knowledge? This does not seem to be a plausible approach.
An automatic classification tool should be rather regarded as an expert system in
which a knowledge database has been carefully created using as many information
sources as possible. The key point is to ensure that the human-supervised pro-
cess of implementing this knowledge (in our case, collecting the audio database)
is carried out following purely objective criteria. The only reliable way to mea-
sure the system performance is to compare its results with the selection criteria
used in creating its underlying knowledge base. Comparing it with any kind of



CHAPTER 4. CREATING THE AUDIO TAXONOMY 48

general human performance is likely to be ill-founded.

4.4 Audio Samples Database

Once the audio class structure was decided, 50 audio examples were collected
for each class, resulting in a 850 file database. Each sample is approximately
30 seconds long, resulting in over 7 hours of audio. All examples are sampled
at 44.1kHz and stored as WAV files. Virtually all are stereo, and some few are
mono. They were collected from CDs, TV, radio, and uncompressed MP3 files,
thus representing a wide range of audio qualities.



Chapter 5

Feature Extraction

The present chapter addresses the audio-specific part in the design process of the
classifier. As shown in Chapter 3, many different features have been proposed to
recognize audio signals. Some of them were initially proposed for speech recog-
nition applications and have been largely used in that field. Other music-specific
features, such as beat features, have been proposed more recently, when music
signals started to be considered.

In the present work, the selection of features has been done in a highly sys-
tematical way. As the first step, a large list of features was elaborated. These
are introduced in this Chapter and include features proposed in previous research
works for music and speech classification, features defined in the MPEG-7 stan-
dard, as well as new features proposed in this work. All of them were implemented
and evaluated with several representative audio samples1. In the second step, a
subset of these features was selected for the final implementation making use of
a feature selection algorithm that will be discussed in detail in the next Chapter.

5.1 Audio Feature Extraction

In the previous introductory discussion of Pattern Recognition, we have assumed
that a feature vector x represents the object to be classified as a whole. However,
audio signals are time-varying objects, and thus special attention must be payed
when defining what exactly does an audio feature vector represent. In this con-
text, we can distinguish between two different approaches: frame-based feature
vectors and texture-based feature vectors.

1All the features and its evaluations were implemented with MATLAB.

49
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5.1.1 Frame-based and texture-based audio classification

Frame-based Feature Vectors

In the frame-based approach, the input audio signal is broken into small (possibly
overlapping) blocks, and a feature vector is computed for each block. In this con-
text, the blocks are called analysis windows. This analysis window corresponds
to the window length depicted in Fig. 2.1.

In this case, a new feature vector is obtained in intervals that usually range
from 10 to 40 ms [35, 33, 9, 44]. This can also be viewed as a time-varying feature
vector that describes a trajectory in the feature space as the signal progresses.

Texture-based Feature Vectors

The frame-based approach is useful when real-time classification is desired. But
its major drawback is that it does not allow to take into account other long-term
characteristics of the signal that can be very useful for the classification. For
example, one can expect that certain measures of the rhythmical structure of a
music signal will be most useful to detect genre. Clearly, it is not possible to infer
something about rhythmical structure when observing only 40 ms of music. The
same applies to dynamic structure or envelope form. For this kind of structural
descriptions, feature vectors that are more separated in time are required.

Furthermore, a recent study [44, 43] has shown that not only structural mea-
sures but also spectral and other timbral measures benefit from lower feature
vector rates, especially when music signals are considered. This indicates that
very often not the feature itself, but its variation in time provides a better descrip-
tion of the signal. As a result, the concept of texture window was introduced2.
A texture window is a long-term segment (in the range of seconds) containing
a number of analysis windows. In the texture-based approach, only one feature
vector for each texture window is generated [35, 44, 48]. The features are not
directly the values obtained in each analysis window, but statistical measures
of all the values obtained for each analysis window within the current texture
window.

The system described here follows the texture-window approach. More specifi-
cally, in this work, and for each underlying frame-based feature, the four following
texture-based subfeatures are computed:

• Mean

• Standard deviation

2The term “texture window” originates from the notion of musical texture, which refers to
the character of the constituent voices and to the relationships among them, and is in turn
reflected in the medium or long-term timbral characteristics.
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• Mean of the derivative3

• Standard deviation of the derivative

To be more precise, we should write sample mean instead of mean and sample
standard deviation instead of standard deviation, since this values are in fact the
estimated parameters of an unknown distribution and are given by Eq. 2.27 and
by the square root of Eq. 2.21. In this case, the samples xj are the values of a
specific feature in each analysis window and N is the number of analysis windows
within each texture window.

5.1.2 Stream-based and file-based audio classification

The sound input to a classification system can be either an audio stream of
unspecified length (such as a radio program) or a stored audio file of known
length. In both cases, any of the two feature-vector extraction methods described
above can be used.

If we use frame-based extraction, we can obtain classification in real time.
Using the texture approach, a classification result can be available at intervals
defined by the texture window. These two procedures are useful if it is possible
that the stream or the file contains more than one type of audio. Classification
is constantly updated, thus allowing to detect changes in the audio content. The
segmentation resolution will be highest for real-time classification and will depend
on the texture window size for texture classification.

However, if the input signals are files, and we assume that each file contains
only one type of audio, we can make use of the fact that the input length is
known to implement a file-based classification. Also, in this case, it is possible to
seek the whole file for the maximum amplitude in order to perform normalization
of the signal (see next section), allowing the features to be independent of the
amplitude-scaling. File-based classification can be done in two ways:

The first method consists of taking the whole length of the file as the texture
window. Thus, classification is based on a single feature vector that represents
the whole file. The other method consists of using either the frame-based or the
texture-based methods and to assign to the file the most frequent class among the
individual classifications. These two approaches to file-based classification will
be denoted as single vector approach and texture window approach, respectively.

The system described here is intended for file-based operation. The two above
methods for file-based classification are evaluated and compared (see Sect. 9.2
and 9.3). A system of this type could be also modified to perform stream-mode
classification, but is expected to perform better on files than on streams, be-

3The term first difference would be more accurate than derivative, as we are working with
discrete signals.
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cause in the first case much more data has been analyzed and therefore more
information is available before a class decision is met.

5.2 Signal Preprocessing

Before proceeding with the feature extraction, the input signal is subjected to
following preprocessing steps, in this order:

Downmixing to mono. If the signal has more than one channel, it is reduced
to a monophonic signal simply by adding its channels. The amplitude
range of the sum signal will depend on the number of added channels, but
it will be normalized to one in the next step in any case. Although the
software implemented for this work is able to read signals with more than
two channels, only stereo and mono signals have been considered for the
training and testing. It has not been tested how signals with more than
two channels could affect classification accuracy.

Normalizing. The scaling of the amplitude level of a signal should not influence
the description of its content, and thus it must be regarded as irrelevant. To
ensure this, it is extremely important to normalize the input signal before
extracting features. The normalization is done with respect to the absolute
valued signal, according to:

xnorm[n] =
x[n]

max{|x[n]|}
(5.1)

It should be noted that, since this is a file-based system, the normalization
is always done by searching the whole file for the maximum, even in the
case where smaller texture windows are used for the feature extraction.

Elimination of zeros. To avoid possible overflows or divisions by zero, all the
samples with zero amplitude values are substituted with a value of 10−9.

5.3 Timbral Features

In this and the next sections, the features that were evaluated in this work are
described in detail. A graphical plot of the variation of each feature in time will
be given. In order to facilitate comparison and to allow insight into the mean-
ing of the features, always two graphical trajectories of representative examples
belonging to two different audio types will be superimposed.

As described above, each feature is evaluated in an analysis window. This
fact will be emphasized by writing Xr for a feature X, where r is the window or
frame index. We will follow the notational conventions of Sect. 2.1 and thus, the
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audio signal will be denoted by x[n], the frame index by r, the total number of
audio samples in each frame (also the number of points of the FFT) by N , and
the frequency bin index by k.4

It should always be kept in mind that in the system described here, the
features are not directly the quantities described by the graphical trajectories,
but their underlying statistical measures (mean, standard deviation and so forth)
across a certain texture window, as described above.

Features are classified in this work according to the signal properties they
describe. In the present section, the timbre-related features are overviewed. The
next section presents the features related to rhythmical properties of the sig-
nal, and in Sect. 5.5 we focus on features describing dynamic, statistical and
predictivity properties.

It is also possible to classify features according to whether they are computed
in the time domain or in the frequency domain, as follows:

• Time domain features: Zero Crossings, Central Moments, Harmonic Ratio,
Root Mean Square, Envelope, Low Energy Rate, Loudness, Predictivity
Ratio.

• Frequency domain Features: Centroid, Rolloff, Flux, MFCCs, Spread, Flat-
ness and all Beat Histogram features.

Except for the MFCCs, the MPEG-7 features and the Rhythm features, all the
other features in this work were computed using a window length of N = 1024 and
a step length of R = 512 audio samples, which means that there is an overlapping
of 50% and no zero padding (see Fig. 2.1). For the frequency domain features,
the window length corresponds to the FFT length. In their case, a Hamming
window was used (Eq. 2.9).

5.3.1 Zero Crossings

The Zero Crossings feature [44, 35] counts the number of times that the signal
amplitude changes signs in the time domain during one analysis window:

ZCr =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (5.2)

where the sign function is defined by

sign(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

4The index notation used in this Chapter should not be confused with the one used in
pattern recognition-related equations that appear throughout the rest of the work.
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For single-voiced signals, zero crossings have been used in the literature to
make a rough estimation of the fundamental frequency. For complex signals it is
a measure of noisiness.

In Fig. 5.1(c), the Zero Crossings curves of two 5-seconds-long classical5 (black
curve) and pop music6 (gray curve) excerpts are shown. These audio examples
are included on the enclosed CD-ROM. In this example of pop music, sudden
changes of the curve correspond to the onsets of the drum set. Particularly, the
valleys in the curve correspond to the main beats given by the bass drum, whose
predominant low frequencies make the Zero Crossings rate to decrease.

5.3.2 Centroid

In an 1974 study by von Bismarck [47], several commonly used verbal attributes
describing timbre were collected and subjected to a statistical study. The goal
was to find which of them could better describe variations in timbre. 30 different
scales whose endpoints were opposite pairs of verbal attributes, such as dark-
bright, smooth-rough, etc., were used by a group of subjects to rate a set of
sounds. It was found that the scale dull-sharp, that is, the scale describing the
attribute of sharpness was the one that carried most of the variance, and thus
most of the information.

This encouraged to find an analytical model which could measure the very
abstract attribute of sharpness. It was found that a good approximation to it was
the center of gravity, or centroid of the spectrum of the signal [46, 52]. Sharpness
is related to the high frequency content of the spectrum, since higher centroid
values correspond to spectra skewed to the range of high frequencies.

Due to its effectiveness to describe spectral shape, centroid measures have
often been used in audio classification tasks [44, 35, 48]. Several variations in the
definition of spectral centroid have been proposed in the literature [51], including
centroids based on the amplitude spectrum, the power spectrum, the logarith-
mical power spectrum and other, more sophisticated definitions that take into
account perceptual scalings. In this work, two of them have been evaluated. The
first one is an amplitude spectrum centroid and is given by

Cr =

N/2∑
k=1

f [k] |Xr[k]|

N/2∑
k=1

|Xr[k]|
(5.3)

where N is the number of FFT points, Xr[k] is the STFT of frame r as given
by Eq. 2.8, and f [k] is the frequency at bin k, as given by Eq. 2.6.

5Excerpt from Siegfried´s Funeral March, from Wagner´s Götterdämmerung.
6Excerpt from Björk´s Violently Happy.
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Figure 5.1: Sound examples and timbral features (continued in Fig. 5.2).
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The other definition of centroid that will be regarded is one of the three
included in the MPEG-7 standard, and will be discussed in Sect. 5.3.6.1.

5.3.3 Rolloff

The spectral rolloff point was first proposed as a feature to distinguish between
voiced and unvoiced speech [35]. Like the centroid, it is also a measure of spectral
shape, and yields higher values for right-skewed spectra. As it will be seen, both
features are strongly correlated.

There are also slight variations in the definition of rolloff. Here, it is defined as
the frequency below which 85% of the accumulated magnitudes of the spectrum
is concentrated [44]. That is, if K is the bin that fulfils

K∑
k=0

|Xr[k]| = 0.85

N/2∑
k=1

|Xr[k]| (5.4)

then, the rolloff is Rr = f [K].
Centroid and rolloff curves for the above musical excerpts are given in Fig.

5.1. It is especially noticeable that these definitions of centroid and rolloff are
strongly correlated.

5.3.4 Flux

Spectral flux , also called Delta Spectrum Magnitude, is a measure of the rate of
change of the spectral shape [35, 44] and is given by the sum across one analysis
window of the squared difference between the magnitude spectra corresponding
to successive frames of the STFT:

Fr =

N/2∑
k=1

(|Xr[k]| − |Xr−1[k]|)2 (5.5)
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Figure 5.2: Spectral flux from the examples plotted in Figs. 5.1(a) and 5.1(b).
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Flux has proven to be a suitable feature for the separation of music from
speech, yielding higher values for music examples [35]. A plot of the flux curves
for the above examples is given in Fig. 5.2.

5.3.5 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are a compact representation of
the spectrum of an audio signal that takes into account the nonlinear human
perception of pitch (see Sect. 2.2). They are one of the most used features in
speech recognition, and have recently been proposed to analyze musical signals
as well [12, 44]. A recent study [23] confirmed that MFCCs are appropriate to
describe music.

A usual algorithm for the extraction of MFCCs, which has also been adopted
here, consists of the following steps:

1. First, the FFT of each analysis window is computed using a Hamming
window.

2. The FFT bins are combined according to a set of triangular weighting
functions that approximate the human pitch perception as described by the
mel scale. This can be viewed as filtering the spectrum with a filterbank
of triangular bandpass filters, and then integrating the output of each filter
over the frequency. The filterbank consists of 40 filters and is defined as
follows:

• The 13 first filters (low frequencies) have triangular frequency re-
sponses whose center frequencies are linearly spaced by a difference
of 133.33 Hz.

• The 27 last filters (high frequencies) have triangular frequency re-
sponses whose center frequencies are logarithmically spaced by a factor
of 1.0711703.

Figure 5.3: Definition of the MFCC filterbank. CF = Center Frequency (from [37]).
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• For all the filters, the lowest frequency of the current filter corresponds
to the center frequency of the previous filter, and the highest frequency
to the center frequency of the next filter (see Fig. 5.3).

3. The base 10 logarithms of the 40 filterbank output coefficients are com-
puted.

4. A Discrete Cosine Transform (DCT) is applied to decorrelate the coefficients
(see Sect. 2.1.4).

It has been found [44] that using only the five first MFCCs provides an op-
timal audio classification performance. Therefore, in this work, a total number
of 20 MFCC-related features are implemented: that is, the variance, standard
deviation, mean of the derivative and standard deviation of the derivative of the
first five MFCCs. The curves of the first five MFCCs from the previous music
excerpts are shown in Fig. 5.4.

The publicly available Auditory Toolbox for MATLAB [37] was used in this
work to compute the MFCCs. A 512-point FFT with no zero padding and 50%
overlapping were chosen as the STFT parameters in this case.

5.3.6 MPEG-7 Features

In the design process outlined in this work, it has been always assumed that no
a priori knowledge about the nature of the incoming signals is available. As a
result, input sounds must be treated in a general way, and only features that
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Figure 5.4: First five MFCCs from the examples plotted in Figs. 5.1(a) and 5.1(b).
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are applicable to any audio type have been taken into consideration. For this
reason, the timbral descriptors belonging to the MPEG-7 standard have not been
regarded, since, as discussed in Sect. 3.2, they are intended for single-voiced,
quasi-periodic audio segments.

For example, the LogAttackTimeType descriptor measures the time from the
starting point of a signal to the sustain section of its envelope. Its motivation is
to describe the onsets of single sound samples from different musical instruments.
Clearly, this measure makes no sense in the context of this work, where complex
and unsegmented excerpts are considered.

The same applies to all features that are based on an estimated fundamental
frequency, that is, the spectral timbral features (HarmonicSpectralCentroidType,
HarmonicSpectralDeviationType, HarmonicSpectralSpreadType and
HarmonicSpectralVariationType). They measure different aspects of the
harmonic components of the spectrum and rely on a previous estimation of the
fundamental frequency. An accurate estimation of the fundamental frequency is
only possible if the signal is single-voiced, and it will yield unpredictable results
for the majority of signals used here. Therefore, these features have also been
discarded.

The selected features (centroid, spread, flatness and harmonic ratio) are also
timbral measures, but are applicable to any audio signal. The first three are
frequency-domain features and, as such, they rely on the previously computed
spectrum. Of course, the extraction of the spectrum is also normalized in the
standard, and is part of the definition of the AudioSpectrumEnvelopeType de-
scriptor. We will describe this common procedure here and will go into detail for
each of the descriptors in the next four subsections.

The MPEG-7 descriptors outlined here were implemented following the Final
Draft International Standard (FDIS) document (ISO/IEC FDIS 15938-4) [1].

MPEG-7 Spectrum Extraction

In MPEG-7, the spectral resolution and the frequency limits are parameters that
can be set up by the user. However, in this work the recommended default values
for them will always be adopted. Also, a sampling frequency of 44.1kHz is always
assumed.

As mentioned above, the default step length, or hopSize, is 10ms (or, if fs is
the sampling rate, 0.01fs samples). The default analysis window length is chosen
to be 3 default hopSizes, that is, 30ms or 0.03fs audio samples. The FFT length
is then the next-larger power of two number of audio samples from the analysis
window; the samples lying between the window end and the FFT end are zero-
padded (see Fig. 2.1). The STFT is computed using a Hamming window (Eq.
2.9), and the resulting magnitude coefficients are converted to power coefficients
Pr[k] using Eq. 2.11.
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5.3.6.1 Audio Spectrum Centroid

It has already been mentioned that spectral centroid measures are motivated by
the fact that they provide an approximate model of timbral sharpness. No less
than three different definitions of centroid descriptors are included in the audio
part of MPEG-7. These are the following:

• AudioSpectrumCentroidType: based on a linear power spectrum and a lo-
garithmical frequency scaling centered around 1kHz. It belongs to the group
of basic spectral descriptors.

• HarmonicSpectralCentroidType: based on the amplitude of the harmonic
components of the spectrum. It belongs to the group of spectral timbral
descriptors.

• SpectralCentroidType: based on a linear power spectrum and a linear fre-
quency scaling. It belongs to the group of spectral timbral descriptors.

The HarmonicSpectralCentroidType has been discarded for it requires an esti-
mation of the fundamental frequency. The SpectralCentroidType corresponds to
the centroid described in Sect. 5.3.2, the only difference being that it is based on
the power spectrum, rather than the amplitude spectrum. Therefore, its behavior
is expected to be very similar and has not been implemented.

In consequence, the AudioSpectrumCentroidType definition was selected for
implementation. The steps for its extraction are the following:

1. The power spectrum is computed as described in the previous section. Since
audio signals are real-valued signals, their spectra are evenly symmetric
about the Nyquist frequency fs/2 and therefore, only the first N/2 power
coefficients Pr[k] must be retained.

2. Before the computation of the centroid, the following intermediate step is
taken to avoid that spurious very-low frequency coefficients have a dispro-
portionally high weight. All coefficients below 62.5Hz are replaced by a
coefficient at the nominal frequency of 31.25Hz and with power equal to
the sum of the replaced coefficients. Formally:

P ′
r[m] =


Nbound∑

k=0

Pr[k] if m = 0

Pr[m + Nbound] if 1 < m < N/2−Nbound

(5.6)

f ′[m] =

{
31.25 if m = 0

f [m + Nbound] if 1 < m < N/2−Nbound
(5.7)
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where Nbound = floor(62.5N
fs

) and f [k] = kfs

N
as given by Eq. 2.6. The

function floor rounds towards −∞.

3. From the obtained, modified power coefficients P ′
r[m] and their associated

frequencies f ′[m], the centroid is defined as

Cr =

N/2−Nbound∑
m=0

log2(
f ′[m]
1000

)P ′
r[m]

N/2−Nbound∑
m=0

P ′
r[m]

(5.8)

As it can be seen, this definition uses a logarithmical frequency scaling
centered at 1kHz. This log-frequency scaling approximates the perception
of frequencies in the human hearing system.

A plot of this MPEG-7 centroid is given in Fig. 5.5(a).

5.3.6.2 Audio Spectrum Spread

The spectral spread , also called instantaneous bandwidth, is another measure of
spectral shape. More precisely, it describes how the spectrum is concentrated
around the centroid. Low spread values indicate that the spectrum is highly
concentrated near the centroid; high values mean that it is distributed across a
wider range at both sides of the centroid.

Several definitions have also been proposed for the spread [22]. In MPEG-7
it is defined by the AudioSpectrumSpreadType descriptor. As previous steps,
the modified power spectrum P ′

r[m] and its associated frequencies f ′[m] must be
computed like in the computation of the centroid. Then, the spread is defined as

Sr =

√√√√√√√√
N/2−Nbound∑

m=0

(
log2(

f ′[m]
1000

)− Cr

)2

P ′
r[m]

N/2−Nbound∑
m=0

P ′
r[m]

(5.9)

where Cr is the centroid defined by Eq. 5.8.

5.3.6.3 Audio Spectrum Flatness

Spectral flatness is a measure of the deviation of the spectral form from that of
a flat spectrum. Flat spectra correspond to noise or impulse-like signals, thus
high flatness values indicate noisiness. Low flatness values generally indicate the
presence of harmonic components.
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The flatness feature is defined in MPEG-7 by the AudioSpectrumFlatnessType
descriptor. Instead of calculating one flatness value for the whole spectrum, a
separation in frequency bands is performed, resulting in one vector of flatness
values per time frame. Thus, the flatness LLD is a two-dimensional descriptor
that inherits the AudioLLDVectorType, in contrast to the rest of descriptors
described here, which are scalar and hence of the AudioLLDScalarType type.

The extraction is normalized in the standard as follows:

1. The power spectrum is computed in first place as described in the preceding
sections. The only difference is that, in this case, a hopSize of 30ms and
an equal window length are recommended (which means that there is no
overlapping).

2. The resulting power spectrum P ′
r[m] is then divided into frequency bands.

The number of bands B and their bandwidth will depend on the low fre-
quency limit (loEdge), the high frequency limit (hiEdge) and the logarith-
mic octave resolution according to the formula
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Figure 5.5: MPEG-7 Centroid and Spread from the examples plotted in Figs. 5.1(a)
and 5.1(b).
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hiEdge = 2resolution·BloEdge (5.10)

A 1/4 octave resolution is used for the flatness. Also, the default values
for loEdge and hiEdge, which will be used in this work, are 250Hz and
16kHz, respectively. With these values, a total number of B = 24 bands
are obtained. Starting at loEdge, the nominal edge frequencies fb for the
bands are obtained by

fb = 2b/4loEdge, 0 ≤ b ≤ B (5.11)

3. However, defining the bands in such a non-overlapping manner can result
in losses of frequency bins when different sampling frequencies are consid-
ered. Hence, the nominal edge frequencies are modified into the actual
edge frequencies by introducing a 10% overlapping: the nominal low edge
for each band is multiplied by 0.95 and the nominal high edge for each band
is multiplied by 1.05.

4. Once the frequency boundaries have been obtained, we must find the corre-
sponding edge bins by inverting Eq. 2.6. It should be noted that a rounding
operation must be considered, since k ∈ Z:

k = round(
fN

fs

) (5.12)

where round denotes rounding to the nearest integer. For a band b, its
corresponding low and high edge bins will be denoted by il(b) and ih(b),
respectively.

5. At this point, the standard specifies a grouping algorithm for the power co-
efficients in order to reduce computational costs. In this work the focus is
to evaluate the behavior of the descriptors rather than to find computation-
ally optimal implementations. Hence, this step has not been implemented
here.

6. The flatness of a band b is defined as the ratio of the geometric and the
arithmetic means of the power spectrum coefficients within that band:

SFr[b] =

ih(b)−il(b)+1

√
ih(b)∏

m=il(b)

P ′
r[m]

1
ih(b)−il(b)+1

ih(b)∑
m=il(b)

P ′
r[m]

(5.13)
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As noticed, flatness is a vector feature that produces a set of values per frame,
one value for each spectral band. In this work, each vector has been reduced to a
scalar by computing the mean value across the bands for each given frame, thus
obtaining a scalar feature describing the overall flatness. Therefore, we will call
it mean flatness rather than simply flatness:

MSFr =
1

B

B∑
b=1

SFr[b] (5.14)

Figures 5.6(a) and 5.6(b) show the flatness descriptor of the two above ex-
amples in its original vectorial form, which results in a spectrogram-like repre-
sentation. The bright areas denote high flatness values, that is, noisiness. In the
pop example, it is possible to appreciate the beat onsets as bright vertical strips.
Figure 5.6(c) shows the frame-based mean values of both examples superimposed,
which constitute our final feature.

5.3.6.4 Harmonic Ratio

The AudioHarmonicityType is a dual descriptor that contains two measures
of the harmonic properties of a spectrum: the HarmonicRatio and the
UpperLimitOfHarmonicity . For the evaluations carried out in this work, the Har-
monicRatio has been implemented. It is a measure of the proportion of harmonic
components within the spectrum and, since it is not based on an estimation of
the fundamental frequency, it can be reliably applied to any kind of input signal.
Its extraction is defined in the standard as follows:

1. For each signal frame xr[n] of N samples, the normalized autocorrelation
(AC) of the input signal at lags τ ranging from 1 to K is computed:

ACr[τ ] =

N−1∑
n=0

xr[n]xr[n− τ ]√
N−1∑
n=0

xr[n]2
N−1∑
n=0

xr[n− τ ]2

, 1 ≤ τ ≤ K (5.15)

For a purely periodic signal, the maximum autocorrelation values will be at
lags corresponding to multiples of its fundamental period T0

7. In the above
definition, all AC values over a range of K different lags are computed,
starting at τ = 1 and ending at the maximum lag K. In order to detect
the first peak of any periodic or nearly-periodic signal, this maximum lag
must have at least the same length as the maximum fundamental period
expected T0,max, and thus is defined by K = T0,maxfs = fs/f0,min.

7Many fundamental frequency estimation techniques rely on this fact.
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(c) Mean MPEG-7 Flatness

Figure 5.6: MPEG-7 flatness and mean flatness from the examples plotted in Figs.
5.1(a) and 5.1(b).

The default T0,max is 40ms, corresponding to a minimum fundamental fre-
quency expected of 25Hz. It should be noted that K can be greater that
the number of samples per frame N . This is in fact the case here, where a
default hopSize of 10ms is used. This means that for the computation of
the AC for one frame, samples ranging out of that particular frame must
also be taken into consideration8.

8This has to be especially kept in mind when designing the buffer processing in the imple-
mentation.
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2. The Harmonic Ratio of one frame r is defined as the maximum AC value
for that frame. This is written in the standard as:

HRr = max
τ=1,N−1

{ACr[τ ]} (5.16)

We used a computation of the autocorrelation in the frequency domain [29]
to improve computational performance.

5.3.6.5 Modifications to the Harmonic Ratio

When implementing the above algorithm as defined in the FDIS document, two
inconsistencies regarding the definition of indices for the maximum search in step
2 were observed:

• In the standard, the index range is written as τ = [1, N − 1] (see Eq. 5.16),
where N is the number of samples in each frame. But, as noted in step 1
of the algorithm, all the AC values for lags τ ranging from 1 to K must be
computed, even in the case when K > N , to ensure peak detection with
the lowest expected fundamental frequencies. Also, if the maximum had to
be chosen only between 1 and N − 1, it would not be necessary to compute
the AC for the lags ranging from N to K. For these reasons, we believe
that the rightmost limit of the search index should be K instead of N − 1.

• In nearly all cases, the HR value is very close to 1, and it also corresponds
to lag τ = 1. This fact is illustrated in Fig. 5.7, where it can be observed
that the first peak of the AC will most likely be the highest in the range
1, K. This is specially the case for complex signals where, although there
can be other peaks denoting periodicities, they are most likely to have less
amplitude that the peak corresponding to little lags. In other words, for
general, complex signals, adjacent samples are more correlated than samples
separated by possible, detected periodicity intervals.

Therefore, in this work the leftmost limit of the range is modified in order
to skip the first peak of the AC when searching for the maximum. The
goal is to find the lag corresponding to the first minimum of the AC after
the first peak, marked by the circles in the figure. This is straightforward
in the common situation described in Fig. 5.7(a), where this minimum
equals the first local minimum of the AC function. However, this first peak
often contains some ripping, as in Fig. 5.7(b). In this second situation, the
first local minimum would correspond to the first minimum in the ripping,
pointed by the arrow in the figure, and the main peak would not be correctly
skipped. In order to avoid this, only AC minima with values below a certain
limit l have been considered. This limit is defined by



CHAPTER 5. FEATURE EXTRACTION 67

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (in samples)

A
ut

oc
or

re
la

tio
n

°  

(a) Smooth main peak

0 200 400 600 800 1000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag (in samples)

A
ut

oc
or

re
la

tio
n

°  

First local minimum 

(b) Ripped main peak

Figure 5.7: Examples of two common autocorrelation forms of a frame (see text for
details).

limit =
1 + min

τ=1,K
{ACr[τ ]}

2
(5.17)

and is shown in Fig. 5.7(b) by the horizontal dotted line.

Following the above considerations, the following modified algorithm for the
extraction of HarmonicRatio has been implemented in this work:

1. Corresponds to the first step of the standard.

2. The Harmonic Ratio of one frame r is defined as:

HRr = max
τ=τ1,K

{ACr[τ ]} (5.18)

where τ1 is the lag of the first minimum of ACr[τ ] in the range τ = [τlimit, K],
and τlimit is the lag of the first value of ACr[τ ] below the limit value given
by Eq. 5.17.

Figure 5.8 shows the two definitions of the Harmonic Ratio used in this work.
It can be seen that, in the case of the classical example, the MPEG-7 definition
yields always values very close to one. Although Fig. 5.8(a) seems to indicate that
the standard definition could work well in separating classical from pop music,
the fact is that its value is always near one for many other types of audio signals,
including speech, background and all classical subgenres. This is shown in Fig.
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5.9, where the harmonic ratios of a speech, a music and a background examples
are compared. It can be noted that, on the one hand, the vertical scaling of the
standard definition is much smaller than that of the modified version. On the
other hand, the signals are more easily separable in Fig. 5.9(b). This will be
confirmed in Chapter 6, where it will be shown that the modified version has
proven to perform better in the classification task.
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Figure 5.8: The two definitions of the Harmonic Ratio used in this work from the
examples plotted in Figs. 5.1(a) and 5.1(b).

5.4 Rhythm Features

Tempo and rhythm are music-specific properties that were proposed as features
for signal analysis when non-speech audio signals began to be taken into consid-
eration. However, just measuring the tempo in bpm9 is not interesting in the
context of genre classification, since different pieces belonging to the same genre
can have very different tempo properties (for example, two movements belonging
to a symphony, or a rock ballad compared to faster rock songs), and pieces from
different genres can have the same tempo.

9beats per minute
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Figure 5.9: The two definitions of the Harmonic Ratio used in this work for speech,
music and background examples.

In contrast, it is most interesting to extract information about the rhythmical
structure. For example, about the regularity of the beats, which is expected to
be much higher in the case of rock and pop music than in the case of classical
music. Beat strength seems to be also a valuable feature. For example, at a more
precise level, it is likely to be higher in techno music than in jazz.

5.4.1 Beat Histograms

Beat histograms allow the extraction of such properties by calculating the beat
strength of a signal along a wide range of bpm values. In this way, peaks on the
histogram correspond to the main beat (most probably the highest peak) and
other subbeats (multiples or divisors of the main beat). Several methods have
been proposed for its computation [14, 44, 36]. In this work, an implementation
provided by zplane.development, which is in turn based on the method described
in [36], has been used. This implementation performs the following steps to
obtain the histogram:

1. First, the 64-point STFT is computed for each frame.
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2. The absolute difference between each FFT coefficient and its corresponding
coefficient from the previous frame is computed.

3. The resulting difference values are added, obtaining a single value that
measures the amount of spectral change for the current frame (similar to
the flux feature described above).

4. The number of time frames is reduced by an integer downsampling factor
D. In this work, a factor of D = 4 is used.
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Figure 5.10: Beat histogram examples. High peaks correspond to high beat strength.
Peaks separated by integer bpm multiples denote rhythm regularity.
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5. The resulting frame values are filtered by a resonator filterbank consisting
of comb filters tuned to the frequencies corresponding to all possible bpm
values. In this work, a range of 30 to 150 bpm is used.

6. The value of the histogram at a given number of bpm is taken as the mean
power of the output of its corresponding comb filter.

The result is a curve describing beat strength as a function of the bpm values.
In Fig. 5.10 some examples of beat histograms of representative signals belonging
to different classes are shown. Figure 5.10(a) shows the beat histogram of a
Hip-Hop excerpt from Cypress Hill. The high peaks denote a high overall beat
strength. The main peak is at 90 bpm and the second at 45 bpm, denoting a
high regularity corresponding to a 2/4 time signature. In contrast, Fig. 5.10(b),
shows less beat strength in a rock example by Green Day. The jazz example
by Kenny Burrell (Fig. 5.10(c)) has a significantly lower beat strength, but it
is still possible to distinguish the main peak at 120 bpm. Finally, the classical
example shown in Fig. 5.10(d) (excerpt from a string quartet by Dvořák) has an
irregular beat histogram in which no clear main peaks can be detected, and no
clear regularity factors, neither.

It should be noted that, although the computation is performed on a frame-by-
frame basis, histograms are obtained in long-term intervals given by the texture
windows. For this reason, all of the features related to the beat histogram are
single-valued features to which the time-domain mean and standard deviation
subfeatures are not applicable.

Once the histogram has been obtained, the next step consists of obtaining
meaningful features from it. As mentioned above, beat strength (or beatedness)
and rhythmic regularity are the desired properties to be extracted for the classi-
fication task. They will be treated separately in the next two sections.

5.4.2 Beat Strength

The amplitudes of the peaks at the different bpm values in the histogram measure
the beat strength at the main tempo and its metric factors and subdivisions. To
obtain an overall measure of beat strength, the following statistical measures of
the histogram have been evaluated in this work:

• mean

• standard deviation

• mean of the derivative

• standard deviation of the derivative

• skewness
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• kurtosis

• entropy

These measures are computed in the “beat domain”, and should not be confused
with the time-based statistical measurements mentioned throughout the rest of
the work (including the subfeatures introduced in Sect. 5.1.1). They have been
introduced in Chapter 2 except for the entropy, which measures the unpredictabil-
ity (interpreted as amount of information) of a signal, and is given in this case
by:

H(B) = −
bpmmax∑

i=bpmmin

B[i] log2(B[i]) (5.19)

where B denotes the beat histogram normalized to its sum and B(i) the beat
strength at i bpm.

5.4.3 Rhythmic Regularity

As mentioned in Sect. 5.3.6.4, autocorrelations (ACs) can be used to measure the
periodicity of signals. Intervals between peaks on the autocorrelation function
correspond to periods of the signal. To measure Rhythmic Regularity (RR), we
explore here two features based on the periodicity of the beat histogram as given
by its normalized autocorrelation:

AC(B, τ) =

Nb−1∑
n=0

B[n]B[n− τ ]√
Nb−1∑
n=0

B[n]2

, −Nb < τ < Nb (5.20)

where n is the element index of the histogram (not the bpm values). Nb is the
total number of elements of the histogram, that is, Nb = bpmmax − bpmmin.

There are several possibilities to normalize an autocorrelation (see Eq. 5.15).
In this case, the AC is normalized so that its value at lag τ = 0 equals unity.

Figure 5.11 plots the autocorrelations of the file-based beat histograms of a
pop example and of a string quartet example. High peaks on these plots (like
in the pop example) denote high periodicity, that is, high regularity between the
rhythmic subdivisions. Since ACs are symmetric about their zero lag, we only
need to retain a half of their values. To obtain a single number describing this
periodicity, the following two values have been evaluated as possible features:

• standard deviation of the derivative of the autocorrelation: Figure 5.12
shows the derivatives of the second halves of the autocorrelations of the two
above samples. High changes in the derivatives correspond to high peaks
in the AC, and will be reflected in high values of its standard deviation.
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Figure 5.11: Beat histogram autocorrelation examples. Music with regular beats, like
pop, shows high peaks in the autocorrelation.
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Figure 5.12: Illustration of the RR1* feature. The figure shows the derivatives of the
autocorrelations of a pop and a classical example.

• mean of the difference between the autocorrelation and a linear function
ranging from 0 to the the peak of the autocorrelation: This can be regarded
as a measure of the linearity of the autocorrelation, and will yield high
values for ACs with strong peaks:

RR =
1

Nb

Nb∑
τ=0

(1− τ

Nb

− AC(B, τ)) (5.21)



CHAPTER 5. FEATURE EXTRACTION 74

Figure 5.13 illustrates this feature. Figure 5.13(a) again shows the two
above autocorrelations, this time superimposed and compared to the linear
function to which the difference is computed. Figure 5.13(b) shows the
resulting difference functions. It is clear that their mean value will be
higher for signals with higher rhythmic regularity.

We will refer to these two definitions as Rhythmic Regularity 1 and Rhythmic
Regularity 2, respectively.
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Figure 5.13: Illustration of the RR2* feature (see text for details).

5.5 Other Features

The features grouped in this last section describe the signal regarding its dynamic
properties (Root Mean Square, Envelope, Low Energy Rate, Loudness), its sta-
tistical behavior (Central Moments) and its predictivity (Predictivity Ratio).

It can be noted that, in this work, no features describing pitch in an explicit
manner have been considered. As mentioned, single pitch extraction is unreliable
for multi-voiced signals. On the other hand, it is questionable if pitch contents
can perform well in distinguishing music types, since virtually any pitch range
can be found in any genre.

5.5.1 Root Mean Square

It has been mentioned that the amplitude scaling of the audio signals should
be considered irrelevant for the classification. However, the middle or long-term
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variation in time of the instantaneous amplitude values can provide useful in-
formation in distinguishing audio types. For example, classical music is more
likely to have a greater dynamic range than pop or rock music. In the same way,
silences between words or phrases result also in rapid amplitude changes in the
case of speech.

For these reasons, a feature describing the smoothed trajectory of the ampli-
tude is desired. Smoothing is required to avoid the high-frequent oscillations of
the signal around the horizontal axis (that is, the zero crossings) and to obtain a
description of the dynamic tendency, rather than of the instantaneous amplitude
of the samples. One possible way to perform this smoothing is to compute the
RMS energy of the signal in each frame, as given by Eq. 2.3, where, in this case,
N is the number of audio samples in each analysis window.

5.5.2 Envelope

Another possibility for the above mentioned smoothing is to take the maximum of
the absolute amplitude values in each frame. The result is an envelope trajectory
that lies on the peaks of the time-domain signal:

ENVr = max
n=1,N

{|xr[n]|} (5.22)

To gain insight into the subtle differences between this definition of envelope
and the RMS value of the last subsection, both curves have been superimposed
upon a short excerpt from the above pop example in Fig. 5.14. It can be seen
that the envelope curve lies on the peaks, while the RMS curve represents more
averaged values of the amplitude.

5.5.3 Low Energy Rate

Another, much more reduced form for describing energy variation is given by the
low energy rate feature [35, 44]. It is defined as the percentage of frames within
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Figure 5.14: Illustration of RMS and envelope curves.
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a texture window that have an RMS energy lower than the mean RMS energy
across that texture window.

It should be noted that, apart from the beat-histogram-based features, this is
the only feature that is not computed on a frame-by-frame basis, but on a texture
window basis.

5.5.4 Loudness

The previous dynamic-related features are based on physical measures like ampli-
tude or energy. A better adaptation to the human perception of sound dynamics
is provided by the simple approximation of loudness introduced in Sect. 2.2.1.
Here, the energy-based loudness approximation for each frame will be evaluated
as a feature:

Lr = E 0.23
r (5.23)

where Er is the energy of the current frame as given by Eq. 2.1. Since we are
interested in the temporal variation rather than in the absoulute values, the k
constant in Eq. 2.14 has been ignored.

Figure 5.15 shows plots of the frame-based amplitude-related features pre-
sented in this section.

5.5.5 Central Moments

The estimated third and fourth order central moments of the time-domain audio
signal, that is, its sample skewness and its sample kurtosis are evaluated here as
possible audio features. They are given by equations 2.24 and 2.25, where in this
case the samples are the amplitudes of the audio samples of the audio signal, and
N is the total number of audio samples within one analysis window.

Skewness and kurtosis are mathematical descriptions of the statistical be-
havior of the signal, and have no straightforward interpretation in a timbral or
perceptual context.

Curves of the central moments for the same music examples are plotted in
Figs. 5.16(a) and 5.16(b), respectively. The peaks on both curves correspond to
the strongest onsets of the amplitudes.

5.5.6 Predictivity Ratio

A p-order linear prediction x̂[n] of a sample x[n] is a prediction of its amplitude
value as a linear combination of its past p samples:

x̂[n] = a1x[n− 1] + a2x[n− 2] + . . . + apx[n− p] (5.24)
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Figure 5.15: Amplitude-related features from the examples plotted in Figs. 5.1(a)
and 5.1(b).

The ai coefficients are called the Linear Prediction Coefficients (LPC), and
can be obtained by one of several proposed algorithms, which aim at obtaining
a prediction error as lowest as possible. In this work, the MATLAB built-in
implementation was used, which is based on the so-called autocorrelation method
of autoregressive modeling [18].

One possibility to measure the prediction error is to compute the ratio of the
energy of the predicted signal to the energy of the original signal. Of course, this
computation will be performed here on a frame-by-frame basis:
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Figure 5.16: Statistical and predictivity features from the examples plotted in Figs.
5.1(a) and 5.1(b).

PRr =

N∑
n=0

|x̂[n]|2

N∑
n=0

|x[n]|2
(5.25)

An order of p = 12 was used here for the linear prediction. Signals with
sudden amplitude changes and high noise components are more likely to yield
Predictivity Ratio values far from unity. The Predictivity Ratio feature is plotted
in Fig. 5.16(c).
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5.6 Feature Overview and Naming Convention

In this Chapter, a total number of 20 frame-based features, plus one texture-based
feature and 9 beat-histogram-based features have been reviewed. Furthermore,
the 4 subfeatures introduced in Sect. 5.1.1, which are applicable to all of the 20
frame-based features, make a total number of 90 available different features, from
which a subset will be selected to implement the classification system.

During the design phase described in the next sections, all these features are
subjected to systematical analysis, and will be mentioned often. To facilitate an
overview and improve readability in the rest of the work, all of them are summed
up in the next tables, assigning to each one a short naming convention.

A feature will be denoted by the following notation:

FEATURE/SF

where SF is one of the four subfeatures given in table 5.1, and FEATURE is the
short name of the corresponding frame-based feature. For example, LOUD/DS
is the standard deviation of the derivative of the loudness. Single-valued features,
to which subfeatures are not applicable, will be denoted by *. In table 5.2 all the
features are listed in alphabetical order.
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Short name Full name
M Mean
S Standard deviation
DM Mean of the derivative
DS Standard deviation of the derivative

Table 5.1: Subfeatures naming convention.

Short name Full name Section
BH Beat Histogram 5.4.2
BHE* Beat Histogram Entropy 5.4.2
BHS* Beat Histogram Skewness 5.4.2
BHK* Beat Histogram Kurtosis 5.4.2
CENTR Centroid 5.3.2
ENV Envelope 5.5.2
FLUX Flux 5.3.4
KURT Kurtosis 5.5.5
LE* Low Energy Rate 5.5.3
LOUD Loudness 5.5.4
MFCC1 First MFC coefficient 5.3.5
MFCC2 Second MFC coefficient 5.3.5
MFCC3 Third MFC coefficient 5.3.5
MFCC4 Fourth MFC coefficient 5.3.5
MFCC5 Fifth MFC coefficient 5.3.5
M7CEN MPEG-7 Centroid 5.3.6.1
M7SPR MPEG-7 Spread 5.3.6.2
M7FLAT Mean MPEG-7 Flatness 5.3.6.3
M7HR MPEG-7 Harmonic Ratio 5.3.6.4
MODHR Modified MPEG-7 Harmonic Ratio 5.3.6.5
PRED Predictivity Ratio 5.5.6
RR1* Rhythmic Regularity (first definition) 5.4.3
RR2* Rhythmic Regularity (second definition) 5.4.3
RMS Root Mean Square 5.5.1
ROLL Rolloff 5.3.3
SKEW Skewness 5.5.5
ZC Zero Crossings 5.3.1

Table 5.2: Alphabetical listing of features and their short names. Features marked
by * are single-valued and thus not compatible with the subfeatures of table 5.1.



Chapter 6

Feature Selection

The curse of dimensionality , which was introduced in Sect. 2.4.5, implies that it is
advantageous to reduce the number of features (that is, the number of dimensions
in the feature space) in order to reduce computational costs while keeping similar
levels of performance, and in some cases even to improve the classification rate.

In a pattern classification application, a well-designed feature should have the
two following general properties:

Invariancy to irrelevancies. A good feature should be invariant to irrelevant
transformations of the input signal. In machine vision applications, ir-
relevancies can include translations, rotations and changes in scale of the
objects. In the audio context, they can include signal quality in respect
of noise and bandwidth, the number of channels, distortions or the overall
amplitude scaling.

Good discriminative power. A feature should take similar values within a
given class, but very different values across classes.

Uncorrelation to other features. Redundant information should be avoided
in the feature space. Each new feature should add as new information about
the object as possible. In a geometrical context, uncorrelation corresponds
to orthogonality.

In this work, features are selected out of the initial list of 90 available fea-
tures in a completely systematical way. We proceed in two steps: the first step
corresponds to the above criterium of invariancy, the second to the criteria of
discriminative power and uncorrelation.

In the present Chapter, dimensionality reduction techniques are presented
first. Advantages and drawbacks of different approaches are overviewed (Sect.
6.1 to 6.3), and the algorithm chosen is explained more in detail (Sect. 6.4).
Finally, the results of the selection are given in Sect. 6.5.

81
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6.1 The Curse of Dimensionality

It is logical to think that adding a new dimension to the feature space will improve
the performance of the classifier. In other words, it seems desirable to examine as
many characteristics of the input object as possible in order to make a decision
about its class. In the worst case, the added feature will not provide much extra
information, but, intuitively, this is not likely to harm the performance; at least,
it will be kept the same.

In fact, adding a feature does provide new information about the object to be
classified, but that is only one part of the matter. In realistic pattern recognition
tasks, two main limitations exist. On the one hand, the size of the training set is
finite. On the other hand, decisions are derived from this limited set, either by
direct comparison (nonparametric methods) or by density estimation.

The accuracy of these decision rules depends on the number of available sam-
ples. In particular, to keep the same classifying accuracy, the density of the
samples in the feature space must remain the same after adding new dimensions.
When adding a feature, we can either choose to

• maintain the same density by increasing the number of samples or to

• maintain the number of samples.

The key point of the problem is that, when adding a new dimension, the
number of training samples must be increased exponentially in order to keep the
same density. Therefore, if samples are costly to obtain, the first above approach
must be discarded. The second approach will result in a feature space in which the
samples are distributed very sparsely, which in turn can result in worse density
estimations or worse classification accuracies.

As a result, for a given set of training samples, there will be a threshold
number of features upon which the performance will stop growing, or even begin
to decrease. This curse of dimensionality has been experimentally observed in
the tests detailed in the next Chapter.

6.2 Dimensionality Reduction Methods

Dimensionality reduction is a general problem that arises not only in pattern
recognition, but also in other signal processing fields such as signal representa-
tion and source separation. As it will be noted, not all of the available methods for
dimensionality reduction are suitable for the specific problem of pattern recog-
nition. In general, dimensionality reduction algorithms [7, 16, 42, 26] can be
broadly classified into two groups:
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Feature Space Transformations (FST)

Given a feature space xi ∈ RN , the problem consists in this case of finding a
transformation y = f(x) : RN → R

M with M < N such that the transformed
vectors yi ∈ R

M preserve most of the information or structure in RN . This
mapping will be optimal if the probability of classification error remains the
same after the transformation. Although linear transformations are suboptimal
in this sense, they are often used because of their theoretical and computational
tractability.

One of the most widely used linear FST techniques is Principal Component
Analysis (PCA), which seeks to preserve as much of the variance of the features
as possible in the transformed space. Intuitively, it aligns the axes of the feature
space with the directions of maximum variance. Thus, it is appropriate to obtain
a low-dimensional accurate representation of a signal. In the context of signal
compression, PCA is called the Karhunen-Loève Transform (KLT).

In contrast to PCA, Linear Discriminant Analysis (LDA) takes into account
the class membership of the feature vectors in order to obtain a low-dimensional
space in which most of the class discriminatory information is preserved. LDA is
conceptually very similar to PCA, the difference being that, instead of maximizing
variance, it maximizes class separability. In the case where only two classes are
considered, LDA is also called Fisher’s Linear Discriminant .

Feature Subset Selection (FSS)

The other approach to reduce dimensions is to select an optimal subset of features
from the set of initially available features without using any transformation. More
formally, given a feature set X = {fi|i = 1..N}, the problem consists of finding
a subset Y = {fi1 , fi2 , .., fiM} with M < N that optimizes a given objective
function J(Y). This objective function will be chosen depending on the context
of the problem; in the case of pattern classification, usually a measure of class
separability is used.

Another possibility is to take the final performance of the classifier as the
objective function. In this case, the feature selection depends on the type of
classifier chosen, and implies the training and validation of the whole system
each time the objective function is to be evaluated. Since different classifiers are
going to be evaluated in this work, we chose an objective function that relies
on the intrinsic properties of the data, such as class separability, rather than on
the final performance, in order to allow computational tractability and to gain in
generality.

From the above methods, only LDA and FSS based on class separability are
appropriate for a classification problem. PCA is not suitable because there is no
guarantee that the directions of maximum variance will contain the best features
for the discrimination into classes.
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On the other hand, LDA has following limitations:

• In a C-class problem, LDA can produce at most C − 1 feature projections.
If more features are needed to prevent high error rates, some other method
must be used.

• The transformed features are linear combinations of the original features.
Thus, the correspondence to the physical meaning of the features is lost.

• LDA implies the computation of all the original features before applying
the transformation.

These three major drawbacks can be however overcome with FSS techniques.
In this case, the maximum number of selected features does not depend on the
number of classes, allowing M > C. As it will be addressed in detail in the
next Chapter, we adopt a hierarchical approach in which the taxonomy tree
is implemented as a series of successive classification problems, each of which
consisting of a number of classes between 2 and 4. In this case, LDA would yield
only 1 to 3 feature projections in each of the individual classification steps. FSS
also reduces computational costs in the feature extraction process, since only the
final M selected features must be computed.

For the above reasons, an FSS algorithm, in particular a Sequential Forward
Selection algorithm based on class separability, has been chosen in this work to
perform feature selection, and will be detailed in the next two sections.

6.3 Class Separability Measures

Intuitively, two classes will be easily separable if each of the variances of their
sample feature vectors are small with respect to the difference of their means. In
other words, a feature will perform well in separating classes when:

• it takes similar values within each class

• it takes very different values across classes

In the two-class problem, one possibility to express this mathematically is to
define class separability as the magnitude of a vector δ whose elements are the
ratio between the difference of the feature means and some combination of their
variances or standard deviations, for example:

δi =
|µ1i − µ2i|

max{σ1i, σ2i}
(6.1)
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In the C-class problem, a measure of how the features are spread within each
class ωk is given by the within-class scatter matrix :

SW =
C∑

k=1

∑
x∈ωk

(x− µk)(x− µk)
T (6.2)

where µk is the sample mean vector of the Nk samples in class ωk (the hat
notation is omitted here for simplicity):

µk =
1

Nk

∑
x∈ωk

xj (6.3)

The within-class scatter matrix can be regarded as an overall covariance ma-
trix that takes into account class membership.

In contrast, the between-class scatter matrix measures how distinct the fea-
tures across the classes are:

SB =
C∑

k=1

Nk(µk − µ)(µk − µ)T (6.4)

where µ is the sample mean of all available N samples, as given by Eq. 2.27.
The first two intuitive criteria given at the beginning of this section correspond

to finding a high between-scatter to within-scatter ratio. This can be obtained by
reducing the above matrices to scalar values by means of their determinants or
their traces1, thus obtaining several possible variations on a generalized definition
of class separability2:

J1 =
|SB|
|SW |

= |S−1
W SB| (6.5)

J2 =
tr(SB)

tr(SW )
(6.6)

J3 = tr(S−1
W SB) (6.7)

The J2 and J3 criteria are more computationally efficient, since the compu-
tation of a trace requires less operations than the computation of a determinant.
In this work, the J3 criterion has been used as the objective function. Since a
matrix inversion of SW is implied in this definition, singular SW matrices must

1The trace of a matrix A, denoted by tr(A), is the sum of the elements on its diagonal.
2These class separability measures constitute also the base of Linear Discriminant Analysis.

In particular, LDA consists of finding the linear transformation that maximizes the J1 criterion
of Eq. 6.5.
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be avoided3. To achieve this, a previous regularization step is taken, by which a
small constant is added to the diagonal of all within-scatter matrices:

SW,reg = SW + αI (6.8)

where I is an identity matrix of the same size as SW and, in our case, α = 0.1.

6.4 Feature Subset Selection

A näıve approach to feature selection for pattern classification would be to choose
one of the above definitions of class separability as the objective function J and
compute its value for each of the features (that is, compute the separability by
considering each time only a single feature in the feature space). Features could
be ranked according to their separability score, and the best M would be selected
from them.

However, if we proceed in this way, correlation between the features is not
taken into account. This is likely to produce very poor results, since, as mentioned
above, the features in an optimal subspace should not only contain as much
information about the signal as possible, but they also should be as independent
to each other as possible to prevent from redundant information.

For this reason, not single features (scalar FSS ) but subsets of features should
be used to evaluate the objective function (vectorial FSS ). However, a number of
2N subsets can be formed out of an initial set of N features, making an exhaustive
testing of all possible subsets unfeasible. As an example, in this work a total
number of 90 features are considered, which results in 290 ≈ 1.2 · 1027 possible
subsets. A search strategy is needed to direct the selection process across the
feature space, to avoid evaluating all possible combinations of features.

In this work, a Sequential Forward Selection algorithm [16] is used as the
search strategy. It consists of the following steps (the subindices of the feature
set Y denote the steps in the algorithm):

1. Start with the empty feature set Y0 = {∅}.

2. Out of the features that have not yet been chosen, select the one feature f+

that maximizes the objective function in combination with the previously
selected features: f+ = argmax

f∈X−Ys

{J(Ys ∪ f)}.

3. Update: Ys+1 = Ys ∪ f+, s → s + 1.

4. Go to 2.

3A singular matrix is a square matrix that does not have an inverse matrix. A matrix is
singular if and only if its determinant is zero.
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6.5 Results of the Feature Selection

As mentioned at the beginning of this Chapter, feature selection has been per-
formed in two steps. In the first step, all initially available features were tested
for robustness to irrelevant transformations of the signals. The remaining fea-
tures were subjected to a Sequential Forward Selection algorithm based on class
separability, resulting in a set of lists in which the features are ranked according
to their overall quality. The actual number of features finally chosen for classifi-
cation was determined by observing the behavior of the classification rate when
increasing dimension, as it will be detailed in the next Chapter.

6.5.1 Tests on Robustness to Irrelevancies

To ensure similar classification rates across a wide range of audio qualities, the
following signal properties have been regarded as irrelevant in the context of this
work:

Amplitude scaling. The average power of an audio signal should have no influ-
ence in making the decision about genre. This irrelevancy has already been
eliminated by normalization in the pre-processing step outlined in Sect. 5.2.

Noise content. Audio should be correctly classified even if it has a moderately
noisy background.

Bandwidth. 4 The bandwidth at which the audio has been recorded or trans-
mitted should have as little influence in the classification as possible.

As the first step in the feature selection, those features that were most suscep-
tible to noise and to moderate changes in the signal bandwidth were discarded.
This has been achieved by the following two tests:

6.5.1.1 Noise Test

In order to test the features for robustness against the addition of noise, we chose
four representative training samples belonging to the speech, classical music,
popular music, and background noise classes. Each example was normalized and
mixed with white gaussian noise of -25 dB RMS power and subjected to file-
based feature extraction. The resulting features of the four noisy signals were
compared with the ones extracted from the original signals by obtaining the
ratio between them. The variations were averaged across the four samples. A
variation threshold for discarding features has not been used, since the variation
values depend on the noise power used for the test. Instead, we set a ranking

4Not to be confused with instantaneous bandwidth or spread (see Sect. 5.3.6.2)
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threshold of 20 features, which seems a reasonable percentage of the initial 90
dimensions. Thus, the 20 worst features in the ranking were discarded.

The results are shown in tables 6.1 and 6.2, which list the 20 features that
varied least and most, respectively, after the addition of noise. Numerical values
in the table give the factor of relative variation of each noisy feature with respect
to each original feature. For example, 0 corresponds to no variation while 0.1
corresponds to a 10% variation above or under the original value. For now on,
the features will be mentioned by their short names, as listed in table 5.2.

The following general conclusions can be drawn from the results of the noise
test:

• The DS subfeatures (standard deviations of the derivatives of the underly-
ing features) are especially robust to noisy changes in the signal.

• The M and DM subfeatures (means and means of the derivatives of the
underlying features) are in most cases highly sensitive to noise.

6.5.1.2 Filtering Test

To test the feature invariance to changes in bandwidth, the same four samples
used for the noise test were lowpass-filtered with a cut-off frequency of 11025Hz.
Filtered features are compared to original features in the same way, obtaining
the averaged results in tables 6.3 and 6.4. Again, the 20 worst features were
discarded.

Observing the results of the filtering test, we can conclude the following:

• MFCCs are highly robust to lowpass filtering (except for their DM vari-
ants).

• The M and DM subfeatures are in most cases highly sensitive to lowpass
filtering.

• The Predictivity Ratio (PRED) feature is extremely sensitive to lowpass
filtering in all of its four subfeature variants . The four PRED-related
subfeatures belong to the bottom-five of the ranking.

As a result of both noise and filtering tests, a total number of 32 features (the
ones that appear at least once in both bottom-ranking lists) were discarded. The
following features are present in the lists in all of their subfeature variants, and
therefore they were not implemented at all in the prototype application:
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Ranking Feature Variation
1. LE* 0.0009
2. BHE* 0.0031
3. RMS/DS 0.0042
4. MFCC4/DS 0.0055
5. MFCC5/DS 0.0085
6. RMS/S 0.0089
7. MFCC3/DS 0.011
8. BH/DS 0.011
9. M7SPR/DS 0.012
10. BH/S 0.013
11. LOUD/DS 0.015
12. BH/M 0.019
13. BH/DM 0.019
14. LOUD/M 0.021
15. M7CEN/DS 0.026
16. MFCC3/S 0.030
17. BHK* 0.030
18. RR1* 0.033
19. M7SPR/S 0.036
20. RR2* 0.040

Table 6.1: Noise test: 20 best features.

Ranking Feature Variation
90. MFCC1/DM 11.89
89. M7CEN/M 10.63
88. KURT/DM 6.94
87. MFCC5/M 4.61
86. ROLL/DM 4.24
85. M7FLAT/DM 2.07
84. MODHR/DM 1.90
83. KURT/DS 1.43
82. MFCC3/DM 1.42
81. KURT/S 1.27
80. MFCC4/M 1.20
79. LOUD/DM 1.06
78. BHS* 1.04
77. RMS/DM 0.88
76. PRED/M 0.86
75. PRED/S 0.80
74. MFCC4/DM 0.74
73. M7HR/DM 0.73
72. PRED/DS 0.72
71. SKEW/DS 0.68

Table 6.2: Noise test: 20 worst features.

Ranking Feature Variation
1. MFCC2/DS 0
2. MFCC1/DS 0.0001
3. MFCC5/DS 0.0001
4. MFCC3/DS 0.0001
5. MFCC4/S 0.0001
6. MFCC2/M 0.0001
7. MFCC4/M 0.0002
8. MFCC3/M 0.0002
9. MFCC5/S 0.0002
10. LE* 0.0003
11. MFCC2/S 0.0003
12. MFCC3/S 0.0004
13. MFCC5/M 0.0007
14. MFCC4/DS 0.0008
15. MFCC1/S 0.0009
16. MFCC1/M 0.0013
17. MODHR/DM 0.0014
18. BHE* 0.0037
19. ENV/S 0.0037
20. MODHR/DS 0.0047

Table 6.3: Filter test: 20 best features.

Ranking Feature Variation
90. PRED/S 2.66
89. PRED/M 2.64
88. PRED/DM 2.23
87. MFCC5/DM 1.46
86. PRED/DS 1.27
85. KURT/DM 1.14
84. LOUD/DM 0.98
83. ROLL/S 0.62
82. M7FLAT/DM 0.56
81. ROLL/DS 0.46
80. CENTR/S 0.41
79. M7HR/DS 0.41
78. MFCC4/DM 0.37
77. CENTR/DS 0.34
76. CENTR/DM 0.31
75. ROLL/M 0.31
74. CENTR/M 0.30
73. M7HR/S 0.30
72. M7HR/DM 0.29
71. SKEW/DM 0.27

Table 6.4: Filter test: 20 worst features.
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• Skewness of the Beat Histogram (BHS* )

• Centroid (CENTR, non-MPEG-7 definition)

• Predictivity Ratio (PRED)

• Rolloff (ROLL)

6.5.2 Results of the Feature Subset Selection

The remaining 58 features were subjected to further selection according to their
class separability capabilities. In the next Chapter, a direct and a hierarchical
approach to classification will be evaluated and compared (Sect. 7.2). These
approaches also have their counterparts in the feature selection process, and will
be treated here separately.

6.5.2.1 Direct Feature Subset Selection

The direct approach to classification is a single-stage 17-class problem (see Fig.
7.2). In this case, all training samples were used for the feature selection using
the overall separability of the 17 classes as the criterion function. Applying the
Sequential Forward search based on the J3 criterion defined in Eq. 6.7 yields a
list in which the 58 features are ordered according to their quality in separating
classes. The best 20 entries of that list are given in table 6.5.

It should be noted that it is not possible to give an absolute numerical measure
of the quality of each feature, since its position in the ranking depends on the
previously selected features.

6.5.2.2 Genre-dependent Feature Subset Selection

The hierarchical approach consists of successive classification problems with a
number of classes ranging from 2 to 4, with the hierarchy corresponding to the
audio taxonomy tree depicted in Fig. 4.1. Rather than using the whole training
database to obtain a single list of selected features, a genre-dependent feature
selection is proposed in this work, in which only the training samples belonging
to the current branch in the classification tree are used to evaluate the separability
of the current 2, 3 or 4 classes.

As a result, a set of 9 feature lists was obtained, one for each split in the
tree. These lists provide useful information about which features best distinguish
between a given set of music or audio subgenres. They are not only useful for
the implementation of the system, but also for gaining insight into the physical,
perceptual, or musical measures that are appropriate in differentiating a given
subgenre. In this way, they can be taken as a guideline to future implementations
of more sophisticated genre-dependent features. The best 20 features for each
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Ranking Feature
1. BHE*
2. MFCC2/S
3. LOUD/DS
4. FLUX/S
5. M7FLAT/M
6. MFCC2/M
7. RR2*
8. MFCC4/S
9. KURT/M
10. LOUD/S
11. MFCC1/S
12. MFCC3/M
13. M7FLAT/DS
14. LOUD/M
15. M7SPR/S
16. MFCC5/DS
17. M7SPR/M
18. ZC/M
19. ZC/DS
20. M7CEN/S

Table 6.5: Direct feature selection: best 20 features.

split are given in tables 6.7 to 6.15. The captions in the tables refer to the split
naming convention presented in table 6.6. We will often use this convention from
now on.

The following conclusions can be drawn from the results of the genre-dependent
feature selection:

• While the M, S, and DS subfeatures appear often throughout the best-20
tables, the DM subfeature appears only 4 times (from a total of 9∗20 = 180
features). That is, the mean of the derivative is not an effective texture-
based measure for classification. This can be explained by the fact that the
mean of the derivative is very likely to take values close to zero.

• The modified version of the Harmonic Ratio, MODHR, shows a better over-
all performance in classification purposes than the original MPEG-7 def-
inition. It appears 8 times among the tables, while the M7HR does not
appear at all. It performs particularly well in separating chamber music
and orchestral subgenres, as can be seen on tables 6.12 and 6.13.

• The second proposed definition for rhythmic regularity (RR2* ), based on a
linearity measure of the autocorrelation of the beat histogram (Sect. 5.4.3),
is a better separator than the other proposed definition (RR1* ), based
on the derivative of the autocorrelation. RR2* has excellent separating
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Short name Full name
1 speech/music/background
2a male/female/speech+background
2b classical/non-classical
3a chamber music/orchestral music
3b rock/pop/jazz
4a chamber subgenres
4b orchestral subgenres
4c hard rock/soft rock
4d pop subgenres

Table 6.6: Split naming conventions.

performance in all splits except for the speech (2a) and the classical splits
(3a, 4a and 4b). In all other splits, it belongs to the top-3 of the ranking.
In contrast, RR1* does not appear on any top-20.

• The ZC/DS feature is an excellent separator. It tops the list in 4 occasions,
which are: separation between classical and non-classical music (2b) and
classical subseparations (3a, 4a and 4b).

• Despite its simplicity, the LOUD approximation of loudness works fairly
well as separator, most of all at the highest levels in the hierarchy (1,
2a, 2b). This is a motivation for the future usage of more sophisticated
perceptual loudness definitions as a feature.

• It is a surprising result that beat strength features (BHE* and BHK* )
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Figure 6.1: Beat Histograms of a speech and a speech with background example.
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play a key role in separating male speech, female speech and speech with
background, as can be seen on table 6.8. However, this phenomenon can be
explained in that word and phrase onsets in speech signals produce strong
“rhythmic” peaks on the histogram, while the noisy or musical background
cause these amplitude jumps to be smaller. Figure 6.1 shows the Beat
Histograms from a male speech sample (dark line) and a TV-commercial
sample (dotted line). A measure of Rhythmic Regularity would yield very
low values in both cases.
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Ranking Feature
1. MFCC2/S
2. MFCC4/DS
3. RR2*
4. LOUD/DS
5. FLUX/S
6. LOUD/S
7. M7FLAT/M
8. MFCC1/S
9. SKEW/S
10. MFCC4/S
11. LOUD/M
12. MFCC2/M
13. M7CEN/S
14. MODHR/S
15. M7SPR/S
16. MFCC1/M
17. BHK*
18. M7FLAT/DS
19. MFCC5/DS
20. ZC/S

Table 6.7: Split 1 best 20 features.

Ranking Feature
1. BHE*
2. MFCC4/S
3. LOUD/S
4. FLUX/S
5. M7FLAT/M
6. BHK*
7. M7SPR/S
8. LOUD/M
9. MFCC2/S
10. MFCC2/M
11. MFCC1/M
12. FLUX/DM
13. MFCC5/DS
14. MFCC3/M
15. MFCC5/S
16. MFCC4/DS
17. FLUX/DS
18. LOUD/DS
19. M7CEN/S
20. M7FLAT/S

Table 6.8: Split 2a best 20 features.

Ranking Feature
1. ZC/DS
2. LOUD/M
3. RR2*
4. SKEW/S
5. MFCC2/M
6. MFCC3/M
7. M7FLAT/M
8. BHE*
9. MFCC3/S
10. MFCC1/S
11. FLUX/S
12. LOUD/DS
13. MFCC2/S
14. LOUD/S
15. MFCC4/DS
16. KURT/M
17. MFCC1/M
18. RMS/M
19. RMS/S
20. ZC/DM

Table 6.9: Split 2b best 20 features.

Ranking Feature
1. ZC/DS
2. FLUX/DS
3. ZC/M
4. SKEW/S
5. MFCC5/S
6. ZC/S
7. LOUD/S
8. BHK*
9. MODHR/M
10. MFCC3/DS
11. FLUX/M
12. MODHR/DS
13. MFCC2/M
14. M7SPR/M
15. MODHR/S
16. ZC/DM
17. MFCC1/S
18. MFCC1/M
19. M7FLAT/S
20. ENV/M

Table 6.10: Split 3a best 20 features.
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Ranking Feature
1. RR2*
2. MFCC1/M
3. MFCC3/M
4. MFCC4/S
5. LOUD/S
6. FLUX/S
7. ZC/M
8. MFCC2/M
9. ENV/M
10. LOUD/M
11. M7SPR/S
12. MFCC3/S
13. MFCC3/DS
14. MODHR/M
15. RMS/M
16. BHE*
17. M7SPR/DS
18. M7CEN/S
19. ZC/S
20. M7SPR/M

Table 6.11: Split 3b best 20 features.

Ranking Feature
1. ZC/DS
2. FLUX/M
3. M7FLAT/M
4. MODHR/M
5. SKEW/S
6. BHE*
7. RR2*
8. MFCC2/M
9. MFCC2/DS
10. FLUX/DS
11. M7SPR/M
12. M7SPR/DS
13. ZC/M
14. ZC/S
15. MFCC5/S
16. MFCC2/S
17. KURT/M
18. FLUX/DM
19. FLUX/S
20. BHK*

Table 6.12: Split 4a best 20 features.

Ranking Feature
1. ZC/DS
2. FLUX/DS
3. MFCC2/M
4. MFCC5/S
5. MODHR/M
6. KURT/M
7. MFCC3/M
8. MFCC1/DS
9. MFCC1/S
10. LE*
11. MFCC1/M
12. ZC/M
13. MFCC2/S
14. MFFC3/S
15. ENV/M
16. MODHR/DS
17. MFCC5/DS
18. FLUX/M
19. LOUD/M
20. M7CEN/DS

Table 6.13: Split 4b best 20 features.

Ranking Feature
1. MFCC1/M
2. RR2*
3. MFCC2/M
4. ZC/M
5. ENV/M
6. LOUD/M
7. FLUX/M
8. MFCC3/S
9. M7SPR/DS
10. RMS/M
11. MFCC3/M
12. M7SPR/M
13. MFCC1/S
14. LE*
15. SKEW/M
16. BHK*
17. M7FLAT/S
18. RMS/S
19. MFCC2/DS
20. KURT/M

Table 6.14: Split 4c best 20 features.
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Ranking Feature
1. RR2*
2. MFCC1/M
3. MFCC4/S
4. MFCC3/M
5. FLUX/DS
6. FLUX/M
7. LOUD/M
8. MFCC1/DS
9. ENV/M
10. BHE*
11. MFCC1/S
12. ZC/M
13. MFCC3/S
14. SKEW/S
15. MFCC2/M
16. ZC/S
17. M7CEN/S
18. BHK*
19. RMS/M
20. KURT/M

Table 6.15: Split 4d best 20 features.



Chapter 7

Classification

Once the audio has been reduced to a small set of numbers by the feature ex-
traction process, it is now turn for the audio-unaware classification algorithms to
examine them and decide a class label. From the large set of proposed classifiers,
the k-Nearest Neighbor (kNN) and the Gaussian Mixture Model (GMM) classi-
fiers have been extensively used and proven to be adequate in audio classification
tasks [35, 21, 33, 9, 44] (see Chapter 3). In this work, the two are thoroughly
evaluated and compared.

Nearest Neighbor classifiers are theoretically simple and have already been
introduced in Sect. 2.4.4. In contrast, GMMs are considerably more complex.
Although it has already been mentioned that they generalize simple gaussian
models by modeling each class as a linear combination of gaussian densities, they
will be considered in more detail in the first section of this Chapter.

7.1 Gaussian Mixture Models

In some cases, normal densities cannot accurately model a distribution of feature
vectors in the feature space. If the nature of the data is of a certain complexity,
the distribution can take a multimodal form, in which several clusters of samples
are present, in contrast to a unimodal distribution with a single gaussian clus-
ter. Gaussian Mixture Models (GMMs) account for this situation by modeling a
distribution as a weighted sum of gaussian densities. In the context of pattern
recognition, each class ωk can be modeled as a mixture model, obtaining class
likelihoods of the following form (see Sect. 2.4.2):

p(x|ωk) =
M∑

m=1

wkm pkm(x) (7.1)

where wkm are the weights of each density and pkm is a normal density of the
form of Eq. 2.30. The m index denotes the number of density within each class,
the k is used as the class index like in the previous chapters. The individual

97
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densities are called the components of the mixture. Using this notation, we can
write p(x)km ∼ N(µkm,Σkm) to emphasize that each component within each
class has its own mean vectors and covariance matrices. It can clearly be seen
that the simple gaussian (GS) model is a particular case of a GMM in which
M = 1. To denote a M-component GMM, we will use the notation M-GMM1.

Figure 7.1 illustrates a set of data samples that has been modeled as a
3-component GMM. Ellipses denote levels of equal probability density for each of
the components. Their centers are given by the mean vector of each component
and their form is determined by their covariance matrices (see Sect. 2.3.3).

As with the case of the normal density, training a GMM is done by ML
parameter estimation, in which the parameter vector θ̂k that maximizes Eq. 2.35
is sought (Sect. 2.4.3). But in this case, the parameter vector for each class has to
contain not only M different mean vectors and M different covariance matrices,
but also the mixture weights wkm:

θk = (wkm, µkm,Σkm), m = 1, . . . ,M.

This expanded parameter vector makes the ML estimation far more complex
than in the simple gaussian case. Usually, it is accomplished by making use

1In benefit of generality, we will denote a GS model as 1-GMM, the same way as we denote
a NN classifier as 1-NN.
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Figure 7.1: Illustration of a 3-centre Gaussian Mixture Model. Ellipses denote levels
of equal probability density for each mixture component. Their principal axes are deter-
mined by their covariance matrices. This figure was obtained from the demonstrations
provided with the Netlab toolbox for MATLAB [28].
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of a so-called expectation-maximization (EM) algorithm [7, 50]. This consists
of a set of iterations in which the parameters are updated in such a way that
the likelihood p(Xk|θk) of Eq. 2.35 increases monotonically until it has reached
a certain threshold value. A detailed explanation of the EM algorithm can be
found in the cited literature, but is out of the scope of this work.

For pattern recognition purposes, it is common use to reduce the covariance
matrices of the components to diagonal covariance matrices, ignoring the off-
diagonal elements, in order to reduce computational costs [48, 33]. The off-
diagonal elements are the covariances between each pair of features (see Sect.
2.3.2), and will have low values if the features are reasonably uncorrelated. This
is likely to be the case here, because the feature selection method outlined in the
preceding section also avoided correlation between successively selected features.
In fact, we observed in our experiments that this simplification had virtually no
influence in the final classification accuracy, and therefore, it was also adopted in
this work.

7.2 Direct and Hierarchical Classification

For each of the classifier models tested here (kNN and GMM ), there are further-
more two possible approaches to implement the classification process: a direct
approach and a hierarchical approach.

Direct approach

In the direct classification scheme, only one decision step is taken to classify the
input audio into one of the 17 classes of the taxonomy. This is the common
approach in virtually all previous works, not only speech/music discriminators
in which there are at most 3 classes, but also in music genre detectors with up
to 8 or 10 classes (see Chapter 3). This approach is illustrated in Fig. 7.2. To
improve readability, we will often make use of short names for the audio classes,
as seen in the figure. The short names are listed in Table 7.1.

In this case, feature selection is performed considering all classes, as explained
in Sect. 6.5.2.1.

Figure 7.2: Direct classification approach. For the class names, see Table 7.1.
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Short name Full name
ba Background
c Classical music
ch Chamber music
cmp Chamber music with piano
ep Electronic/pop
fs Female speech
hip Rap/Hip-Hop
hr Hard Rock
ja Jazz
m Music
ms Male speech
nc Non-classical music
o Orchestral music
ocm Other chamber ensembles
or Symphonic music
orc Orchestra with choir
ors Orchestra with soloist
pop Pop
r Rock
s Speech
sb Speech with background
sm Solo music
sq String quartet
sr Soft Rock
tec Techno/Dance

Table 7.1: Class naming conventions.

Hierarchical approach

However, in this work a special effort has been made in exploring a hierarchical
alternative, which consists on a tree-based succession of class decisions corres-
ponding with the class taxonomy depicted in Fig. 4.1. In this way, level one
of the taxonomy corresponds to a three-class classification problem. Following
the decision of this first problem, we then switch to one of the three or two-class
problems at the second level (splits 2a or 2b), and so on2.

Figure 7.3 shows the taxonomy again, this time in a more schematic manner.
Roman numbers indicate the different levels of classification. The combination
of numbers and letters found beside each split on the tree indicate the naming
convention for the splits, which was already presented in Table 6.6.

2This hierarchical approach can be regarded as a classification tree, since it divides a single-
stage problem into a set of reduced-class stages. However, this term usually refers in pattern
recognition literature to a classifier in which the decision at each split is based on the comparison
of a single feature with a given threshold value, different single features being evaluated at
different stages [4]. For this reason, the term classification tree will be avoided here.
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Not only classification, but also feature selection has been made hierarchically.
That is, features were selected depending on the current split they must separate,
by using only the training samples belonging in each case to its child classes (Sect.
6.5.2.2).

The special focus of this work on this hierarchical method was motivated by
the advantages it offers in comparison with the direct approach [3]:

• A hierarchical approach allows to account for the class dependency of the
features. Clearly, some features will be more suitable than others when
classifying into a given set of subgenres. For example, features describing
rhythmic regularity are more likely to perform better in separating classical
from pop music than in classifying into chamber music subgenres. This is
exactly the motivation for the genre-dependent feature selection addressed
in the previous Chapter.

• It allows the errors to be more graceful than in the case of a direct classi-
fication. For example, if a symphonic music sample is wrongly classified as
orchestral music with soloist, it is not so bad as if it were classified as Hip-
Hop. Dividing the decision in subdecisions makes the errors concentrate
within the given subgenre.

• It closely reflects the underlying audio taxonomy, thus allowing to evaluate
the separability of broad common-used genres, such as pop, rock and jazz,
and their suitability for automatic classification purposes.

Figure 7.3: Hierarchical classification approach. Roman number indicate classification
levels. Numbers with letters denote the splits. For the class names, see Table 7.1.
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• It provides the framework for the future design of more sophisticated genre-
dependent features. Possibilities include, for example, a measure of overall
distortion for detecting Hard Rock, singer detection to distinguish opera, a
measurement of reverberation to separate chamber music from symphonic
music or more sophisticated loudness models.

• It makes future expansions of the taxonomy easier. If a new class were
added to the direct scheme, the feature selection algorithm would have
to be run again with all training samples. Furthermore, each class would
have to be re-trained according to the new result of the feature selection.
In contrast, in a hierarchical approach, only the genre branch to which a
new class is added should be modified with respect to feature selection and
training, the rest of the models remaining unchanged. In this way, an end-
user would be able to create its own subsplits on the taxonomy without
needing the whole training database for the rest of genres.

However, it has the following three major drawbacks:

• The classification rates are multiplicative across levels. For example, a sig-
nal correctly classified as string quartet must have been correctly classified
as chamber music at the previous level, as classical music at the previous
level and as music at the highest level. As it has been found by the ex-
periments explained in the present Chapter, this leads to a slightly poorer
performance than the direct case. To compensate the higher possibility of
error, the genre dependent features must be very well designed to fit their
particular classes.

• It presents much more complexity in the implementation.

• It is more computationally expensive, not only because more classification
decisions must be met for a given input signal, but also because it is likely
that a higher number of features than in the direct case must be computed.

As a result of the above considerations, both direct and hierarchical variants of
the kNN and GMM classification were implemented in MATLAB and compared
in the following experiments. For the kNN and GMM algorithms, the publicly
available Netlab toolbox was used [28].

7.3 Feature Preprocessing

As can be derived from the feature curves across Chapter 5, each feature has a
very different value range. Classification must not be influenced by the numerical
ranges of the features, but by their statistical behavior. To ensure this, all test
and training feature vectors must be normalized in such a way that their values
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lie within comparable ranges. This can be accomplished by normalizing each
element of a feature vector according to:

xi,norm =
xi − µi

σi

(7.2)

where µi and σi are the mean and standard deviation of the feature xi across all
N available samples of all classes :

µi =
1

N

N∑
j=1

xij (7.3)

σi =

√√√√ 1

N

N∑
j=1

(xij − µi)2 (7.4)

Each new unknown input feature vector is normalized using the previously
stored µi and σi parameters.

The normalization is especially important in the case of the kNN classifier,
since its class decision is based on the computation of a distance metric (see Sect.
2.4.4), and is thus extremely dependent on the scaling of the feature space axes.

7.4 Design of the Classifier

Goal of this work is not only to examine several methods to perform classification,
but also to select one of them to be implemented in a final prototype application
programmed in the C/C++ language. This section details the experiments to
which the different algorithms were subjected, and provides the line of argument
in choosing the final model.

The parameters that have to be chosen to obtain a final working system are
the following:

• Classification model: kNN or GMM

• Classification approach: direct or hierarchical

• Number of training samples

• Classifier parameter: number of neighbors k for the kNN or number of
centres M for the GMM

• Number of features
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The evaluations performed in this Chapter were done using the holdout method
[16]: 10% of the audio database samples were used for testing and the other 90%
for training, resulting in a test set of 85 samples and a training set of 765 samples.
Particularly, we use a stratified holdout method, which means that each class is
represented by the same number of samples in the test and training sets. As a
result, 5 samples from each class were randomly selected to form the test set.

The main drawback of the holdout method is that the performance measures
depend on the particular test set chosen. To obtain a better estimate of the
final performance of a classification system, a cross-validation method is needed
for the evaluation. Cross-validation will be used in Chapter 9 to measure the
performance of the final application. However, in the present Chapter, the focus
is to compare a wide range of classifier and parameter combinations and to observe
tendencies in the behavior of their performances rather than to obtain an accurate
prediction. For this reason, the much less computationally costly holdout method
was used here.

It should also be noted that all the classification rates given in this Chapter
correspond to the overall classification rate of the whole system, considering the
17 classes. Also, the file-based approach (one feature vector per database sample)
was used. When testing the final application, more detailed indications about
performance in particular levels and sublevels, as well as with both texture-based
and file-based approaches, will be given.

The curves on the next two pages present the results of the experiments.
They give the classification performance as a function of the number of features
selected per classification stage for the two types of classifiers and for k and M
parameters ranging from 1 to 6. The particular case k = 1 corresponds to a
nearest neighbor classifier, and the case M = 1 corresponds to a simple gaussian
classifier.

Of course, the features are selected in the order displayed in the lists of Sect.
6.5.2. It can be seen from the figures that increasing the number of features does
not increase the performance substantially for high dimensions. In most cases,
the curves tend to stop increasing significantly at a certain number of features,
as a result of the curse of dimensionality.

Choice of the Model

Table 7.2 shows the performance of the different classification approaches aver-
aged across the number of features for each different k or M parameter. The last
column in turn averages the values across the k/M parameters.

It can be seen that the different approaches have very similar averaged perfor-
mances, ranging from 59.5% to 63.3%. This fact makes averaged performance a
weak argument in favouring one model over the other. Therefore, we rather based
our decision in regarding the behavior of the performance curves, as follows:

Curves for the direct kNN approach tend to reach the highest performance
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Figure 7.4: Performance of the 1-NN and 1-GMM classifiers.
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Figure 7.5: Performance of the 2-NN and 2-GMM classifiers.
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Figure 7.6: Performance of the 3-NN and 3-GMM classifiers.
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Figure 7.7: Performance of the 4-NN and 4-GMM classifiers.
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Figure 7.8: Performance of the 5-NN and 5-GMM classifiers.
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Figure 7.9: Performance of the 6-NN and 6-GMM classifiers.
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k/M 1 2 3 4 5 6 Average
kNN dir. 62.8 60.3 61.3 62.8 64.2 64.3 62.6
kNN hier. 61.8 56.2 61.4 60.5 63 62.2 60.9
GMM dir. 62.7 64.6 64.1 64.1 63.3 61 63.3
GMM hier. 55 60 61.3 60.6 60.2 60 59.5

Table 7.2: Performance of the direct and hierarchical approaches averaged across the
number of features.

at around 35 to 50 features, and for the hierarchical approach around 20 to 35
features. For the GMM, curves tend to peak at a lower number of features, around
10 to 25, both in the direct and hierarchical cases. These peak performances lie
in both kNN and GMM cases on the same range (65% to 75%). This means that
with the GMM model, the highest performance is reached with less features than
with the kNN model, allowing to reduce computational costs.

Another major drawback of the kNN classifier is that it tends to fit the decision
boundaries too closely on the training data (see for example Fig. 2.6), resulting in
a lack of generality due to overfitting, as mentioned in Sect. 2.4.5. GMM models
each class statistically, and is therefore more likely to reflect the true nature of
data.

Yet another disadvantage of kNN, as mentioned in Sect. 2.4.4, is that it
requires the storage of the feature vectors of the whole training database in order
to search for the nearest neighbors, as well as the computation of the distance
between the unknown vector and each of the N stored vectors. In contrast,
the GMM solution needs to store only one set of model parameters (means and
covariances) for each of the classes. When classified, an input vector only needs
to be compared with each of these C models.

Consequently, the GMM algorithm allows similar performance as the kNN
while highly reducing computational costs and ensuring generality, and for these
reasons, it was chosen as the model for the final implementation.

It can also be seen on the table that the hierarchical approach leads to slightly
lower performance in both kNN and GMM cases. As mentioned in Sect. 7.2,
this is explained by the higher probability of error that results from adopting a
tree-like stepwise classification. Considering that the difference in performance
is small, it has been nevertheless opted for the hierarchical approach, since it
features the additional advantages of allowing genre-dependency of the features,
flexibility and upgradability, as outlined in the mentioned section.

Choice of the Number of Training Samples

Some authors in pattern recognition literature have noted that it can be disad-
vantageous to train a classifier with substantially different number of samples
per class [19]. However, it is well known that in some situations, data complexity
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is also substantially different among classes, requiring that more complex data
should be represented in the database by more training samples than less com-
plex data. For example, very few training samples would be needed if we would
like to train a silence class, in contrast to the number of samples that would be
required to train a broad music class.

In this work, the audio database consists of 50 samples for each of the 17
classes. In the direct approach, the GMM is trained with an equal number of
samples per class (45 training samples per class). However, in the hierarchical
case, this will strongly depend on the classification level. For example, at the
highest level, it is differentiated between speech, music and background. The
speech class contains 3 subclasses, the music class 13 leaf-classes and the back-
ground class is itself an end class. This results in an unbalanced set of 135, 585
and 50 samples for each of the classes, respectively. The same applies to other
splits on the tree.

To proof if unequal training sets can really make performance worse in our
particular audio situation, we reevaluated the hierarchical classification meth-
ods described above, but this time ensuring that at each stage, all classes were
trained using the same number of samples. Considering the same example, the
background leaf-class on stage 1 constrains to select 45 training samples out of
all the samples belonging to the speech and music classes. Table 7.3 shows the
results.

k/n 1 2 3 4 5 6 Average
kNN hier. 57.6 53.7 57.9 57.7 59.6 59.4 57.7
GMM hier. 54 57.4 56.8 56.8 56.3 54.4 56

Table 7.3: Performance of the direct and hierarchical approaches averaged across the
number of features using equal number of training samples per class.

When compared with table 7.2, this results show clearly that in this case,
it is better to keep as much training samples as possible, rather than to select
balanced training sets.

Choice of the Model Parameter

As can be seen on table 7.2 the GMM hierarchical approach yields very similar
performances for values of M from 2 to 6, peaking at M = 3 (61.3%) and staying
around 60% in the other cases. The simple gaussian case (M = 1) does perform
somewhat poorer (55%). Of all the considered classifier/parameter combinations,
the GS case is the one for which the direct and the hierarchical approach differ
most in performance, as can be also seen on Fig. 7.4. From the rest of parameters,
a value of M = 3 was chosen, which shows a slightly better performance.
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Choice of the Number of Features

Finally, the last parameter that remains to be chosen is the actual number of fea-
tures to be selected at each of the hierarchy steps. It has been stated in repeated
occasions that the optimal number of features is closely related to the number
of training samples per class. Unfortunately, there exist no specific design equa-
tions that relate number of samples and number of dimensions to classification
error for the particular case of a GMM classifier, as for most of all other possible
algorithms.

Consequently, this value has to be obtained empirically. It has been mentioned
that the performance curves of the GMMs tend to reach the maximum at around
10 to 25 features before staying at comparable levels for higher number of features.
In the particular case of the 3-GMM (Fig. 7.6), these peaking occurs at a number
of 20 features. With this number of features, an optimal relationship between
classification accuracy and computational performance is achieved. Hence, the
20 best features at each stage will be selected and computed (see tables 6.7 to
6.15).

It is worth emphasizing that, in this particular system, 20 is the optimal
number of features given a number of 50 training samples per class. Extending
the audio database would result in a higher optimal number of features, and
vice versa. Although increasing the optimal number of features is a possible
strategy to improve performance, it is rather a costly one, since it would require
to augment the number of training samples exponentially, as a result of the curse
of dimensionality .

Another important consideration is that the choice of the number of features
was done observing the overall performance. Observing the individual stage per-
formances is likely to result in a different optimal number of features for each
split in the tree, since at each stage, the number of training samples per class
is different (and equal to 50 times the number of leaf classes each father class
comprises). This is a possible issue to be investigated in the future, since it can
probably benefit performance.

The final specifications of the classifier to be implemented in the final appli-
cation are outlined as follows:

• Classification model: 3-GMM

• Classification approach: Hierarchical

• Number of features: 20



Chapter 8

Implementation

All the implementations and computations that have been detailed so far in the
present work have been programmed in MATLAB, which because it is an inter-
preted language is useful for simulation and testing, but far too slow for a practical
application. Besides the exploration of possible solutions to the audio classifica-
tion problem, constructing a prototype application in a compiled language which
could demonstrate the selected algorithm and which could constitute a base for
future improvements was a goal of this work. In this case, the C/C++ language
was chosen for the implementation.

The result is the classify.exe command-line application that runs on Win-
dows operating systems. In contrast with the MATLAB implementation, in which
the feature extraction process of a single 30-second audio file lasted several min-
utes, faster than real-time feature extraction has been achieved with the applica-
tion.

The classify.exe application is included on the enclosed CD-ROM, together
with a set of WAV test examples (see Appendix C). Of course, the provided WAV
files were not a part of the training database used to train the specific class models
included in this version.

8.1 Program Functionality

The program takes an audio file in WAV format as input and displays a class
label on the screen after the processing. As argued in the preceding Chapter,
classification is performed using a hierarchical 3-GMM classifier that follows the
taxonomy of Fig. 4.1. At each level, 20 features are extracted from the audio,
according to the lists given in Sect. 6.5.2.2. The classification is file-based, and
assumes that only one type of audio is present within the file.

The application is intended to demonstrate classification, and does not offer
the possibility of training new classes or re-training old ones. Each class was
trained using the MATLAB implementation used earlier in the work. The result-
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ing parameter vectors θk are passed to the C program as binary data files. Of
course, the implementation of the training process is one of the possible future
upgrades of the initial version.

Besides these basic functionalities, the application also has the following char-
acteristics that were not present in the MATLAB implementation:

• Possibility to work in single vector mode or in texture window mode (see
Sect. 5.1.2). Both modes have been evaluated and compared in the next
Chapter.

• Possibility to stop classification when a certain level in the tree is reached.
This allows the flexible usage of the tool as just a music/speech/background
discriminator, as a classical/non-classical separator, as a rock/pop/jazz sep-
arator, and so on, if it is not desired to reach the most detailed subgenres
at the bottom of the tree.

• Efficient feature extraction: only the features that have not been extracted
at the previous levels are computed, the rest are loaded from a set of feature
buffers. If the feature is frame-based, its whole time-trajectory across the
given texture window is saved, so that all of its four M, S, DM or DS
subfeatures can be extracted at lower levels without having to recompute
the feature.

• Flexible buffer processing: As has been seen in Chapter 5, different STFT
parameters (FFT length N , window length L, step length R) are used to
compute the different features. The processing function of the program
takes these parameters as input arguments and adapts its buffering oper-
ations according to them. This allows the easy addition of features with
any combination of these parameters (with or without zero padding, with
different grades of overlapping, etc.).

• Detailed probability output: Rather than only a single final genre decision,
the different decision probabilities with which the analyzed signal has been
classified into the candidate genres are displayed at the output. In this way,
we gain insight into the reliability of the given classification decision.

• Tree implementation optimized for future upgrades: Although the initial
demo application does not allow to create or train new classes, the audio
taxonomy has been implemented as a dynamic tree, which allows easy future
expansions.

8.2 Program Structure

The program is structured following the canonical main program/library ar-
chitecture. The feature extraction and the classification routines are encapsu-
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Figure 8.1: Program structure.

lated in the corresponding features and classification modules within the
libclassification library, as shown in Fig. 8.1.

The main program loads the current feature list and model parameters from
the taxonomy tree, and then runs a processing loop during which, at each itera-
tion, a new frame is read from the audio file and the feature extraction module
is called to compute the desired features for that frame, storing each value in the
trajectory buffers. All the features are implemented within the features module,
except for the computation of the beat histogram, for which the BeatTracker

library by zplane.development is called.
When the end of the file or of the texture window is reached, the resulting

feature vector is passed as input argument to the classification module. Ac-
cording to its class prediction, the new feature lists and model parameters are
loaded and the whole process restarts.

Figure 8.2: Implementation of a tree node. Asterisks denote pointers.
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Implementation of the taxonomy tree

As has been mentioned in the preceding section, the class taxonomy has been
implemented as a dynamic tree. These are tree-like data structures in which
each node contains pointers to each of his child nodes. In our case, each node
corresponds to an audio class and, apart from the children pointers, contains all
the information regarding its corresponding list of features and its GMM model.
The structure of each node is detailed in Fig. 8.2.

The classification process is done recursively: first, the root node is taken as
the starting node and its list of features and the GMM models of its children are
loaded. When a classification decision is met, the corresponding child is taken
as the starting node and the whole process is repeated until the user-defined
maximum level or a leaf node has been reached (leaf nodes are those whose lists
of children pointer contain only NULLs).

8.3 User Interface

The program is started from the shell prompt by typing

classify audiofile [level] [step]

The optional level argument indicates the maximum classification level de-
sired. Its range is 1 to 4, where 1 corresponds to a speech/music/background
discriminator and 4 to the full 17-class audio taxonomy. The default value is 3.

The optional step argument indicates the desired classification step (that is,
the desired texture-window length) in seconds. The default value is 30 seconds.
A value of 0 means single-vector classification. The minimum is set to 0.2, since
lower values would produce conflicts with the analysis windows. If the analyzed
file is shorter than the number of seconds typed, single-vector classification is
performed.

When invoked, the program displays the classification tree up to the desired
level. If the single-vector mode is selected, the whole file is processed, and after-
wards, the classification result is displayed. The different classification probabili-
ties (which can be interpreted as the certainty of the classification) are displayed
beside the corresponding leaf nodes of the tree. These are the a posteriori proba-
bilities from the classes, computed from their GMM likelihoods p(x|ωk) (Eq. 7.1)
using Bayes’ law (Eq. 2.32). Since we assume that all classes are equally prob-
able, we can simplify the factor P (ωk) from Bayes’ law, reducing the equation
to:

P (ωk|x) =
p(x|ωk)

C∑
k=1

p(x|ωk)

(8.1)
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where, in this case, C is the number of candidate classes within the current split.
Each probability is multiplied with that of its father node.

The probabilities are tabulated to match the tree structure and to improve
readability. All the probabilities within each of the tabulated levels must add up
to the probability of their father node. This is shown in Fig. 8.3 for the particular
case of a level 4 classification.

If texture-window mode is selected, classification is updated at the configured
intervals. Each time a decision is made, a green square is added to the horizontal
bar beside the corresponding tree branch, and the probability indications are
updated. The bars at the right side of the tree form the classification histogram
of the current signal. Figure 8.4 shows the program in texture-window mode, for
a level 2 classification.

8.4 Operation Modes

The MATLAB implementation described in the previous chapters based the clas-
sification of each test audio sample (around 30s long) on a single feature vector
describing the whole file. That is, means, standard deviations, and the other
subfeatures where computed over a texture window corresponding to the length

Figure 8.3: Screenshot of the classify application in single-vector mode and level 4
classification.
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Figure 8.4: Screenshot of the classify application in texture-window mode and level
2 classification.

of the file. In contrast, as mentioned above, the classify application outlined
here is able to operate using either of the approaches for file-based classification
described in Sect. 5.1.2.

Single vector mode

In this case, only one class decision is made for each file. The selected class is
the one with the highest certainty within the current set of leaf subclasses. Only
a single square appears at the corresponding leaf, and the certainty is displayed
beside the final class name (Fig. 8.3).

Texture window mode

A simple approach in the texture-window case would be to count the number of
times each class has been detected, and declaring the one with the highest count
(that is, the one with the longer bar in the histogram) as the final class. However,
this can lead to poor results because of the following two reasons:

• The classification probabilities are not taken into account.

• If two classes happen to have the same histogram count, which can often
be the case with large texture windows, the class decision would be inde-
terminate.

Therefore, both the decision counts and the probabilities have to be regarded
in order to make the final decision. This in turn requires to average the proba-
bilities in time, which cannot be done in the straightforward way of adding the
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successive probabilities of each class and dividing by the total number of clas-
sification steps taken so far. This would only work if all leaf classes belonged
to the same level, and if all final class probabilities would be computed at each
classification step. The complex tree structure handled here does not fulfill these
conditions and forces, first, to average each probability only with the number of
times it was computed, rather than with the total number of steps, and then, to
multiply with the father certainties.

When the end of the file has been reached, the averaged probabilities 〈P (ωk|x)〉
are weighted with the histogram counts:

〈P (ωk|x)〉w =
Wk

W
〈P (ωk|x)〉 (8.2)

where Wk is the number of times class ωk was selected, and W is the total number
of texture-windows. The final class is the one that has the largest 〈P (ωk|x)〉w
value. This value is displayed beside the name of the final class.



Chapter 9

Evaluation

In chapter 7, many possible combinations of classifiers and their parameters were
tested for their all-class overall performance using the holdout method. In the
present chapter, the implemented application will be subjected to a more de-
tailed performance evaluation in which not only the all-class performance, but
the performances at each level will be analyzed. The hierarchical approach allows
to give genre-dependent performance values, thus gaining insight into how easy
or difficult it is to separate a given set of subgenres.

In the last section of the Chapter, the computational performance of the
program will also be analyzed.

9.1 Cross-validation

The holdout method used in Chapter 7 is highly dependent on the used test set.
For example, if the test set happens to be an especially “lucky” one, the results
will be positively biased and it will give a too optimistic performance estimation.

One approach to avoid this and to obtain a realistic estimation of performance
is to repeat the evaluation K times, using each time a different test set. In the
K-fold cross-validation method, the evaluation is iterated K times, each time
using a randomly selected test set consisting of K% of the samples of the whole
database. Then, the performances across the iterations are averaged to obtain
the final estimation of the classification rate R:

R =
1

K

K∑
i=1

Ri (9.1)

The test samples that are already part of a test set are ignored for the rest of
the random selection. In this way, it is assured that all the examples in the data
set are eventually used for both training and testing. If we additionally impose
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that each class must be represented by the same number of samples in the test
set, the cross-validation is said to be stratified.

A value of K = 10 is a common choice in the evaluation of pattern recognizers,
and has been also adopted in this work. Therefore, the algorithm used here will
be a stratified 10-fold cross-validation.

9.2 Classification Performance in Single-Vector

Mode

When evaluating a classification tree such as the one used here, some subtle issues
must be taken into consideration. For example, if it is said that jazz samples were
classified with an accuracy of 70%, this can actually have two meanings:

• 70% of the jazz samples that have been correctly classified as non-classical
music at the previous level have been correctly recognized as jazz.

• 70% of all the jazz samples contained in the test set have been correctly
recognized as jazz.

According to these two interpretations, for each split on the tree two different
performance indications will be given:

• Accumulative performance: Percentage of samples of the test set correctly
classified.

• Independent performance: Percentage of samples correctly classified at level
i that have been correctly classified at level i + 1.

The accumulative performance is a more demanding measure, since it con-
siders the samples that have been incorrectly classified elsewhere in the tree,
accounting for the multiplicative nature of the performance of tree-based classi-
fiers. On the other hand, the independent performance is useful if we are wishing
to estimate how good the system is in separating two given subclasses. For the
particular case of split 1 (speech/music/background), accumulative and inde-
pendent performances will be identical. The all-class performance is implicitly
accumulative.

Table 9.1 shows the results of the 10-fold cross-validation for each of the splits
in the tree (the percentages are given as mean values plus their standard devi-
ations across the iterations) when using the single-vector approach (one feature
vector per training or test sample). In order to improve readability, only the
final results are shown here. The complete results of each of the iterations of the
cross-validation experiment are given in detail in Appendix A.
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Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 94.59± 1.77 94.59± 1.77
2a male/female/speech+background 76.67± 8.46 82.31± 8.63
2b classical/non-classical 91.08± 3.68 96.08± 2.02
3a chamber music/orchestral music 74.29± 7.25 81.52± 7.88
3b rock/pop/jazz 63.67± 6.17 70.33± 8.65
4a chamber subgenres 42.50± 12.08 54.67± 13.92
4b orchestral subgenres 52.67± 10.63 75.21± 11.83
4c hard rock/soft rock 55.00± 16.50 79.52± 20.18
4d pop subgenres 62.00± 9.96 76.15± 9.55

Table 9.1: Single vector split classification performance using the hierarchical ap-
proach.

Level Accumulative
performance

Independent
Performance

I 94.59± 1.77 94.59± 1.77
II 83.88± 6.07 89.20± 5.33
III 68.98± 6.71 75.92± 8.27
IV 53.04± 12.29 71.39± 13.87

Table 9.2: Single vector level classification performance using the hierarchical ap-
proach.

Table 9.2 averages the obtained values across each level, to obtain a measure
of the level-related accuracy.

Finally, the all-class performance value is given in table 9.3 for each of the
evaluation iterations, and in average.

Fold All-class performance
1 56.47
2 61.18
3 63.53
4 56.47
5 61.18
6 56.47
7 58.82
8 61.18
9 55.29
10 56.47

Average 58.71± 2.85

Table 9.3: All-class performance.
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A more detailed information about the classification performance is given by
the so-called confusion matrix (Fig. 9.1). Its rows correspond to the actual classes
and its columns to the predicted classes. For example, an entry of 8 in element
(1,2) of the matrix denotes that 8% of the male speech samples were wrongly
classified as female speech. Correct classifications correspond to the diagonal.
The square margins and the different grades of shading denote the splits on the
hierarchy. The class short names were introduced in Table 7.1.
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Figure 9.1: Confusion matrix. An entry of R in element (i,j) of the matrix means that
R% of the test samples of class i were classified as belonging to class j. The square
margins and the different grades of shading denote the successive decision splits.

The following conclusions can be drawn from the observation of the confusion
matrix:

• It is clear to see that the classification errors tend to appear within the same
class groups or subgroups, which indicates the ability of the hierarchical
approach to produce graceful errors (see Sect. 7.2).

• Many music samples were wrongly classified as background. Perhaps the
most surprising result of the confusion matrix is the high number of choral
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music samples (26%) that have been wrongly clasified as background noise.
On the other hand, only 4% of the background samples were classified as
music.

• All the non-classical music samples misclassified as chamber music are jazz
examples. This is musicologically consistent, since, from a purely instru-
mental point of view, it can be said that jazz is chamber-music-like.

• The matrix also confirms the difficulty of separating the rock and pop
classes. Particularly, the most difficult genres in the hierarchy are Soft
Rock (42% of correct classifications) and Pop (38% correct). It can also be
seen that many rock examples have been classified as pop, and vice versa.

• The musical genres with the best classification rates are Rap / Hip-Hop
(78%) and Techno (70%). This indicates that they are very separable
classes, in which their belonging examples have similar characteristics within
a class (low within scatter) but differentiated characteristics when compared
with the rest of classes (high between-scatter).

9.2.1 Comparison with the Direct Approach

To obtain a more reliable comparison between the hierarchical and the direct
approach, we repeated the above 10-fold cross-correlation test with the direct
3-GMM approach implemented in MATLAB. Tables 9.4 and 9.5 show the results.
It can be seen that, although the all-class performance is slightly better than with
the hierarchical approach (59.76% against 58.71%), as predicted in Chapter 7,
there are some splits at which the classification is worse in the direct approach.

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 96.35± 1.70 96.35± 1.70
2a male/female/speech+background 76.67± 9.03 81.00± 9.19
2b classical/non-classical 94.31± 3.48 96.67± 2.45
3a chamber music/orchestral music 75.43± 7.15 78.06± 6.81
3b rock/pop/jazz 65.33± 5.49 71.83± 9.38
4a chamber subgenres 50.50± 9.26 63.05± 13.24
4b orchestral subgenres 52.00± 15.65 75.86± 18.26
4c hard rock/soft rock 59.00± 19.69 78.91± 21.09
4d pop subgenres 58.67± 16.87 71.57± 16.04

All classes 59.76± 5.23

Table 9.4: Single-vector split classification performance using the direct approach.
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Level Accumulative
performance

Independent
Performance

I 96.35± 1.70 96.35± 1.70
II 85.49± 6.26 88.83± 5.82
III 70.38± 6.32 74.95± 8.10
IV 55.04± 15.36 72.35± 17.16

Table 9.5: Single-vector level classification performance using the direct approach.

9.2.2 Performance Using Only MPEG-7 Features

As another experiment, it has been tested how the system would work if it was
fully “MPEG-7-compliant”, that is, if only the reviewed MPEG-7 features were
used for the single vector, hierarchical classification. These make a total of four
descriptors (M7CEN, M7SPR, M7FLAT, M7HR) plus their associated subfea-
tures, resulting in a total of 16 features. Since these number is lower than the
optimal number of features per class (20), all of the 16 features were used for
these evaluations, without prior subset selection.

Table 9.6 shows the results of this experiment, for which also a 10-fold cross
validation was used (the test sets are the same as the used in the preceding
sections).

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 85.41± 2.61 85.41± 2.61
2a male/female/speech+background 59.33± 11.95 69.66± 14.07
2b classical/non-classical 79.38± 3.18 92.98± 2.61
3a chamber music/orchestral music 66.86± 4.51 75.91± 5.77
3b rock/pop/jazz 41.67± 5.50 60.44± 7.86
4a chamber subgenres 32.50± 11.84 47.17± 15.00
4b orchestral subgenres 44.67± 9.45 69.32± 8.37
4c hard rock/soft rock 38.00± 14.76 67.75± 18.00
4d pop subgenres 26.00± 16.47 53.96± 26.70

All classes 41.41± 5.20

Table 9.6: Single vector split classification performance using only MPEG-7 features.

The best independent performance was obtained in the distinction between
classical and non-classical music (92.98%), which is comparable to the one ob-
tained with the other features (96.08%). All the other splits show significantly
poorer results, especially in the case of the accumulative performances. This re-
sults suggest that the evaluated MPEG-7 features do not provide good results by
themselves for a classification purpose using the approach proposed in this work.
However, the DDL language defined within the standard (see Sect. 3.2) provides
the infrastructure to allow the definition of new features if it were necessary.
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As far as the classification algorithm is concerned, all the tools needed for
its full-MPEG-7-compliant implementation are already defined in the standard.
For the implementation of the class tree and its relationships, a Description
Scheme called ClassificationScheme could be used. For the statistical compu-
tations (means, variances, etc.), the standardized Probability Models could be
used. A GaussianMixtureModelType is also normalized in the document. All
these tools belong to Part 5 of the standard: Multimedia Description Schemes
[2].

9.3 Classification Performance in Texture Win-

dow Mode

In Sect. 8.4, the texture window operation mode of the application was intro-
duced. One of the goals of the evaluation tests described in this work was to find
which of both file-based classification approaches worked better.

For that purpose, a 10-fold cross validation experiment was carried out for
each of the following 7 texture window sizes: 0.5, 1, 2, 5, 10, 15 and 20 seconds.
It should always be kept in mind that all the training and test samples are
approximately 30 seconds long.

Table 9.7 summarizes the results for the independent performances at each
level (the complete evaluation tables are given in Appendix A), comparing them
with the results of the single-vector mode (last column). It can be seen that, with
the largest texture window sizes, the levels of performance reached are similar to
those of the single-vector approach.

Level 0.5s 1s 2s 5s 10s 15s 20s single-vector
I 66.24 68.82 73.18 82.82 88.47 92.71 92.12 94.59
II 56.11 67.90 79.82 84.57 83.94 87.08 88.08 89.20
III 63.42 61.00 62.12 65.8 72.11 74.64 74.79 75.92
IV 50.35 50.19 52.50 58.77 61.11 66.89 68.44 71.39

All classes 24.12 27.88 34.00 41.65 46.69 53.76 53.76 58.71

Table 9.7: Summarized results of the texture window mode evaluation. The first row
of the table indicates the lengths of the texture-windows.

Fig. 9.2 is a plot of Table 9.7. It can clearly be seen that the curves stop
growing at a window size of 15s. This indicates that observing longer blocks
from the files does not provide much additional information, assuming the audio
content is reasonably homogeneous. For this reason, the system is expected to
maintain similar performance also in the case in which longer texture windows
were considered.
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Figure 9.2: Results of the texture window mode evaluation (see Table 9.7).

9.4 Computational Performance

For each classification decision, the most time of the computation is taken by
the feature extraction process. In comparison, the GMM decision is virtually
instantaneous, since it consists only on the computation of 17 probabilities and
on the choice of the greatest one among them. For this reason, the file-based and
texture-based approach for a given file take exactly the same time, although in
the latter case several classification decisions are met.

In such a hierarchical system, each final classification decision will take a
different time, depending on the features that must be computed and on the
maximum level reached. Therefore, to test computational performance, 7 differ-
ent samples belonging to the 7 different splits in which at least one leaf node

Final class group Relation to real-time
1 (background) 0.64

2a 0.57
4a 0.69
4b 0.71
4c 0.72
4d 0.70

3b (jazz) 0.68
Average 0.67

Table 9.8: Computational performance. The given numbers are fractions of real-time.
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is present, were selected. The numbers on Table 9.8 correspond to the ratio of
computation time to sample duration. A value of 1 means real-time computation,
lower values mean faster than real-time computation.

This test was run on a Pentium III processor at 1000 MHz.
In all cases, the program has proven to operate around 1/3 faster than real-

time. It should be noted that real-time computation of the features is meant here,
not real-time classification. As mentioned in Sect. 5.1.1, real-time classification
is only possible when the frame-based approach for feature extraction is used. In
our case, the timely rate of classification decisions will be given by the length of
the texture window (or of the file in single vector mode).



Chapter 10

Results and Conclusions

In the first chapters of this thesis, the theoretical background and some of the
previous research works in the field of audio classification were presented in detail.
This provided the context to situate the main part of the work, which consisted
on the thorough description of the process of designing an audio classifier, as well
as of its strengths and difficulties.

A total number of 90 features have been considered. They were systemati-
cally selected according to their susceptibility to noise and signal bandwidth and
to their class separating ability. It was found that, for the given number of 50
training samples per class, a number of 20 features results in an optimal classifi-
cation performance to computational performance ratio. These 20 features were
selected in a class-dependent, hierarchical way, allowing to evaluate their quality
in separating a given subset of classes. These results can constitute the starting
point for the design of more sophisticated, genre-dependent features.

The line of argument in selecting the classifier was provided by the evaluation
and comparison of its classification performance, computational performance,
flexibility and generality. These considerations led to the choice of a hierarchical,
GMM-based classifier, which in turn constituted the basis for implementing a
prototype tool for classifying audio files.

10.1 Summary of Results

The classification rates given in the preceding chapter differ substantially across
levels of the tree, showing the different grades of difficulty in separating each
corresponding set of classes. The best independent performances were achieved
at the highest levels in the tree, for example achieving 94.59% accuracy in differ-
entiating between speech, background and music, 96.08% in separating classical
from non-classical music and 81,52% in separating chamber music from orchestral
music.

In contrast, the main difficulties arise in the most specific genres at the bottom
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levels of the tree, especially in the case of the four chamber music subgenres, where
the total classification accuracy is only of 54.67%. The bottom levels of the tree,
as well as the high number of classes considered, make the all-class classification
rate drop to 58.71%. To achieve higher rates at these levels, more sophisticated,
genre-specific features are needed.

As mentioned in Chapter 3, it is not possible to make a reliable comparison
across systems with respect to classification accuracy, most of all because of the
different number of classes considered (see Tables 3.1 and 3.2). The system that is
most similar to the one described in this work in respect of taxonomy complexity
and classification method is the one by Tzanetakis and Cook [44]. In this case, a
performance of 61% when classifying into 10 classes is reported, compared with
the 59.76% (direct approach) and 58.71% (hierarchical approach) rates achieved
here when classifying into 17 classes.

The 3-class highest classification level (speech/music/background), for which
accuracies of 96.35% (direct approach) and 94.59% (hierarchical approach) were
obtained, can be compared with the systems by Zhang and Kuo [50] and Lu et al.
[24], which achieve performances of 90% and 96.51%, respectively, with exactly
the same three classes. The differentiation between male speech, female speech
and speech with background (81% direct, 82.31% hierarchical) can be compared
to the equivalent classification in Tzanetakis and Cook [44] (74%).

The implemented prototype application can work faster than real-time, and
can constitute the base of a practical file-based classifier operating at the highest
levels of the tree. The 17-class performance is still too low for considering a
practical application comprising all classes in the tree.

The two possible methods for file-based classification (single-vector and texture-
window-based classification) were compared. It was obtained that, for texture
windows longer than about 15 seconds, classification rates became similar to
the ones obtained with the single-vector approach. This suggests that observing
more than 15 seconds of homogeneous audio does not provide much additional
information for the classification task.

10.2 Contributions to the State of the Art

The following novel issues have been presented in this work:

Hierarchical approach. A fully hierarchical approach is proposed, both in the
classification and in the feature selection. It was a special focus of this work
to explore the performance of such a hierarchical approach in comparison
with the more commonly used direct approach. As described in detail in
Sect. 7.2, the hierarchical approach has many advantages with respect to
the direct approach, such as less costly errors, upgradability and possibility
of implementing genre-dependent features, but also the risk of obtaining
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worse overall classification performance than the latter. However, this work
shows that this performance difference is only of about 1%, making the
hierarchical approach a promising option for the future development of
classification systems.

Evaluation of the problems of dimensionality. In the audio classification
context, very little attention had been paid to evaluating the problems of
high dimensionality in the feature space. Here, the problem is addressed in
detail (see Chapter 6), and the convenience of a reduction in dimensionality
has been confirmed. This has been made by means of an automatic feature
selection algorithm.

New features. A set of new features to represent beat strength and rhythmic
regularity is proposed. In particular, the new Rhythmic Regularity fea-
ture worked especially well as class separator. Also, a simplified model of
loudness as well as the time-domain skewness and kurtosis of the signal are
proposed as features.

Evaluation of robustness to noise and bandwidth changes. Features that
were most susceptible to noise and moderate changes in the signal band-
width were discarded, to ensure similar performance across a wide range of
audio qualities.

Evaluation of MPEG-7 descriptors. We tested the performance of the Au-
dioSpectrumCentroid, AudioSpectrumSpread, AudioSpectrumFlatness and
Harmonic Ratio MPEG-7 descriptors as features in the general audio clas-
sification problem.

Improvement of the MPEG-7 definition of the Harmonic Ratio. Some
inconsistencies were regarded in the definition of the Harmonic Ratio pro-
vided in the standard. The proposed implementation was modified obtain-
ing a Harmonic Ratio that worked significantly better in the classification
process.

General audio taxonomy. A special effort was made in defining a musicolo-
gically consistent taxonomy which tries to be both simple and as general
as possible. This taxonomy has resulted in the highest number of classes
(17) that has been considered so far in a general audio classification system.
Also, the following new classes were introduced: chamber music, chamber
music with piano, orchestra with soloist and orchestra with choir.

10.3 Outlook

Automatic Audio Classification is a discipline that is still in its beginnings, es-
pecially in the case of music classification. Although algorithms classifying very
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differentiated and broad classes such as speech, classical music or popular music
have already reached practical levels of performance, there is still much work to
be done in order to obtain a system capable of classifying a higher number of
classes with high accuracy. Possible general directions in future research include
the following:

Design of new features. In this and virtually all previous works it has been
observed that performance across different proposed classification algo-
rithms are very similar. This indicates that the success of a system depends
mainly not on the pattern recognition algorithm, but on the design of the
audio features. In particular, to improve performance at specific subgenres
in the lower levels of the taxonomy, genre-dependent features are needed.
Possibilities include models of distortion or roughness, detection of singing
style, measures of reverberation, etc.

Search of new models. Another direction in future research is to find other
statistical models that could represent distributions of audio features more
accurately than the usual current models.

Exploration of other dimensionality reduction methods. Many methods
for the reduction of dimensions in the feature space have been proposed in
the pattern recognition literature [7, 16]. Some of them can be probably
succesfully applied in an audio context.

Expansion of the taxonomy tree. This is an obvious direction for improve-
ment, but must be taken with care, examining how likely are the new classes
to be separated with the available features.

The above considerations are applicable to the audio classification field as a
whole. The following refer to this work in particular and present more specific
possibilities for the development of its results:

Implementation of real-time classification. The program could be expanded
to allow not only file-based classification, but also real-time, stream-based
classification, for which only frame-based feature vectors could be used (see
Sect. 5.1.1).

Implementation of training in the application. The application described
in Chapter 8 does not have training capabilities, obtaining the model pa-
rameters from the MATLAB implementation. An obvious possibility is to
upgrade it to include this possibility.

Use of a more sophisticated model of loudness. In spite of the simplicity
of the loudness model used here, it worked fairly well as feature. This mo-
tivates the implementation of more sophisticated psychoacoustical models
considering excitation patterns or partial masking.
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Genre-dependent number of features. We based our decision of the number
of features on the overall performance of the classifier, and then used the
same fixed number in each classification stage. As it has already been men-
tioned, another possibility would be to address the choice of the number of
features1 in an independent manner, observing in each case the performance
at the corresponding level, and choosing a different number of features per
stage. This can probably improve performance.

Genre-dependent model parameters. Similarly, it could be explored if se-
lecting a different number of GMM centres at each stage could benefit the
classification rate.

Full MPEG-7 compatibility. The DDL language defined within the standard
allows to include “non-MPEG-7” features into a full-MPEG-7-compliant
application. Also, as mentioned in Sect. 9.2.2, all the other needed tools,
such as the hierarchy tree, the statistical measurements, as well as the GMM
distribution, are already defined in Part 5 of the standard [2].

1not to be confused with the choice of the features themselves, which was already addressed
hierarchically
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Appendix A

Complete Evaluation Data

Single-Vector Mode

Split Classes Accumulative performance Independent Performance

1 speech/music/background 91.76 91.76
2a male/female/speech+background 73.33 73.33
2b classical/non-classical 81.54 91.38
3a chamber music/orchestral music 80 90.32
3b rock/pop/jazz 63.33 86.36
4a chamber subgenres 45 47.37
4b orchestral subgenres 40 66.67
4c hard rock/soft rock 70 100
4d pop subgenres 60 75

All classes 56.47

Table A.1: Single vector split classification performance (fold 1).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 94.12 94.12
2a male/female/speech+background 66.67 76.92
2b classical/non-classical 92.31 96.77
3a chamber music/orchestral music 71.43 78.13
3b rock/pop/jazz 66.67 71.43
4a chamber subgenres 55 73.33
4b orchestral subgenres 66.67 100
4c hard rock/soft rock 50 71.43
4d pop subgenres 53.33 61.54

All classes 61.18

Table A.2: Single vector split classification performance (fold 2).
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Split Classes Accumulative performance Independent Performance

1 speech/music/background 97.65 97.65
2a male/female/speech+background 73.33 78.57
2b classical/non-classical 93.85 95.31
3a chamber music/orchestral music 77.14 79.41
3b rock/pop/jazz 66.67 74.07
4a chamber subgenres 55 68.75
4b orchestral subgenres 60 81.82
4c hard rock/soft rock 50 71.43
4d pop subgenres 66.67 76.92

All classes 63.53

Table A.3: Single vector split classification performance (fold 3).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 95.29 95.29
2a male/female/speech+background 93.33 93.33
2b classical/non-classical 90.77 96.72
3a chamber music/orchestral music 74.29 81.25
3b rock/pop/jazz 60 66.67
4a chamber subgenres 35 43.75
4b orchestral subgenres 53.33 80
4c hard rock/soft rock 40 80
4d pop subgenres 60 69.23

All classes 56.47

Table A.4: Single vector split classification performance (fold 4).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 95.29 95.29
2a male/female/speech+background 80 80
2b classical/non-classical 90.77 95.16
3a chamber music/orchestral music 74.29 81.25
3b rock/pop/jazz 60 66.67
4a chamber subgenres 45 64.29
4b orchestral subgenres 60 75
4c hard rock/soft rock 50 83.33
4d pop subgenres 66.67 83.33

All classes 61.18

Table A.5: Single vector split classification performance (fold 5).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 96.47 96.47
2a male/female/speech+background 73.33 73.33
2b classical/non-classical 92.31 96.77
3a chamber music/orchestral music 60 67.74
3b rock/pop/jazz 66.67 68.97
4a chamber subgenres 20 36.36
4b orchestral subgenres 40 60
4c hard rock/soft rock 70 100
4d pop subgenres 80 92.31

All classes 56.47

Table A.6: Single vector split classification performance (fold 6).
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Split Classes Accumulative performance Independent Performance

1 speech/music/background 94.12 94.12
2a male/female/speech+background 86.67 100
2b classical/non-classical 95.38 98.41
3a chamber music/orchestral music 71.43 75.76
3b rock/pop/jazz 63.33 65.52
4a chamber subgenres 25 38.46
4b orchestral subgenres 66.67 83.33
4c hard rock/soft rock 60 85.71
4d pop subgenres 60 75

All classes 58.82

Table A.7: Single vector split classification performance (fold 7).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 92.94 92.94
2a male/female/speech+background 73.33 78.57
2b classical/non-classical 90.77 98.33
3a chamber music/orchestral music 71.43 80.65
3b rock/pop/jazz 76.67 82.14
4a chamber subgenres 50 71.43
4b orchestral subgenres 46.67 63.64
4c hard rock/soft rock 70 70
4d pop subgenres 73.33 84.62

All classes 61.18

Table A.8: Single vector split classification performance (fold 8).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 95.29 95.29
2a male/female/speech+background 80 85.71
2b classical/non-classical 92.31 96.77
3a chamber music/orchestral music 88.57 96.88
3b rock/pop/jazz 53.33 57.14
4a chamber subgenres 45 47.37
4b orchestral subgenres 53.33 66.67
4c hard rock/soft rock 20 33.33
4d pop subgenres 53.33 80

All classes 55.29

Table A.9: Single vector split classification performance (fold 9).

Split Classes Accumulative performance Independent Performance

1 speech/music/background 92.94 92.94
2a male/female/speech+background 66.67 83.33
2b classical/non-classical 90.77 95.16
3a chamber music/orchestral music 74.29 83.87
3b rock/pop/jazz 60 64.29
4a chamber subgenres 50 55.56
4b orchestral subgenres 40 75
4c hard rock/soft rock 70 100
4d pop subgenres 46.67 63.64

All classes 56.47

Table A.10: Single vector split classification performance (fold 10).



APPENDIX A. COMPLETE EVALUATION DATA 135

Texture-Window Mode

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 66.24± 8.48 66.24± 8.48
2a male/female/speech+background 33.33± 14.05 42.99± 13.03
2b classical/non-classical 42.61± 10.10 69.23± 14.23
3a chamber music/orchestral music 20.86± 11.03 76.35± 24.50
3b rock/pop/jazz 27.67± 3.16 50.48± 9.62
4a chamber subgenres 9.50± 4.38 35.75± 24.04
4b orchestral subgenres 4.57± 8.92 28.00± 45.41
4c hard rock/soft rock 19.00± 12.87 72.00± 33.93
4d pop subgenres 25.33± 10.33 65.63± 11.43

All classes 24.12± 3.77

Table A.11: 0.5s texture-window split classification performance.

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 68.82± 6.78 68.82± 6.78
2a male/female/speech+background 42.67± 8.43 52.43± 8.50
2b classical/non-classical 53.08± 9.09 83.38± 10.81
3a chamber music/orchestral music 33.14± 13.21 69.44± 16.78
3b rock/pop/jazz 30.33± 4.83 52.55± 7.74
4a chamber subgenres 13.5± 4.74 34.09± 15.33
4b orchestral subgenres 9.33± 8.43 40.67± 32.50
4c hard rock/soft rock 20.00± 14.91 59.67± 37.92
4d pop subgenres 27.33± 9.66 66.31± 11.27

All classes 27.88± 2.71

Table A.12: 1s texture-window split classification performance.

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 73.18± 2.92 73.18± 2.92
2a male/female/speech+background 58.67± 12.88 67.23± 14.32
2b classical/non-classical 63.08± 5.32 92.40± 6.60
3a chamber music/orchestral music 44.29± 12.07 67.48± 12.80
3b rock/pop/jazz 34.00± 5.16 56.75± 8.14
4a chamber subgenres 19.50± 6.85 35.43± 10.95
4b orchestral subgenres 16.00± 11.84 42.55± 27.66
4c hard rock/soft rock 26.00± 16.47 66.14± 39.23
4d pop subgenres 28.67± 9.96 65.90± 10.81

All classes 34.00± 3.21

Table A.13: 2s texture-window split classification performance.
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Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 82.82± 2.37 82.82± 2.37
2a male/female/speech+background 71.33± 8.92 74.38± 9.73
2b classical/non-classical 74.77± 2.92 94.76± 2.89
3a chamber music/orchestral music 55.71± 10.28 69.31± 11.07
3b rock/pop/jazz 42.67± 6.81 62.29± 6.59
4a chamber subgenres 25.50± 6.43 39.89± 4.80
4b orchestral subgenres 30.67± 13.77 65.08± 27.25
4c hard rock/soft rock 31.00± 18.53 67.64± 31.03
4d pop subgenres 35.33± 12.59 62.45± 16.14

All classes 41.65± 4.44

Table A.14: 5s texture-window split classification performance.

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 88.47± 2.87 88.47± 2.87
2a male/female/speech+background 70.00± 12.27 72.67± 14.45
2b classical/non-classical 82.00± 3.91 95.20± 2.99
3a chamber music/orchestral music 62.86± 7.25 74.86± 6.91
3b rock/pop/jazz 55.00± 5.50 69.35± 7.94
4a chamber subgenres 30.00± 10.54 42.55± 12.72
4b orchestral subgenres 36.67± 11.00 69.19± 20.82
4c hard rock/soft rock 39.00± 17.29 67.35± 14.05
4d pop subgenres 47.33± 10.16 65.35± 10.23

All classes 46.59± 4.23

Table A.15: 10s texture-window split classification performance.

Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 92.71± 1.98 92.71± 1.98
2a male/female/speech+background 76.00± 10.51 79.18± 10.53
2b classical/non-classical 87.54± 3.44 94.99± 2.84
3a chamber music/orchestral music 70.29± 10.19 78.97± 10.17
3b rock/pop/jazz 60.33± 5.76 70.31± 5.86
4a chamber subgenres 39.00± 13.08 52.93± 15.85
4b orchestral subgenres 46.67± 11.76 71.40± 15.20
4c hard rock/soft rock 46.00± 15.78 72.75± 22.74
4d pop subgenres 55.33± 7.73 70.49± 9.65

All classes 53.76± 4.87

Table A.16: 15s texture-window split classification performance.
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Split Classes Accumulative
performance

Independent
Performance

1 speech/music/background 92.12± 2.42 92.12± 2.42
2a male/female/speech+background 77.33± 7.17 80.71± 8.60
2b classical/non-classical 87.84± 4.38 95.45± 2.60
3a chamber music/orchestral music 68.57± 8.73 77.05± 7.96
3b rock/pop/jazz 62.67± 6.63 72.52± 7.50
4a chamber subgenres 36.50± 13.34 49.46± 15.62
4b orchestral subgenres 46.00± 16.16 72.47± 20.63
4c hard rock/soft rock 51.00± 13.70 77.99± 18.26
4d pop subgenres 60.00± 10.42 73.85± 12.43

All classes 53.76± 5.26

Table A.17: 20s texture-window split classification performance.



Appendix B

Results of the Musical
Questionnaire

The tables on the next two pages show the complete results of the musical ques-
tionnaire outlined in Sect. 4.2. Numerical values are the percentages of replies
that assigned the corresponding broad genre (rock, pop or jazz) as a father genre
for the given example. For each example, a list of the proposed specific subgen-
res is given. Numbers in parenthesis give the total number of proposals given for
each subgenre.

The last column lists which genre assigned the implemented application (level
3 classification) to each of the examples. In this case, parenthesis indicate the
certainty of each decision. The two examples wrongly classified as classical music
correspond to music excerpts with little beat strength (example 8) or with no
drum set at all (example 2).

The numbers listed in the first column correspond to the file names of the
music excerpts, as included on the enclosed CD-ROM (see Appendix C).

Total number of replies : 75
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Appendix C

Contents of the CD-ROM

The contents of the enclosed CD-ROM are organized in the three following di-
rectories:

• classify: Contains the classify.exe application, together with the needed
*.gmm and *.par files, which store the model parameters. For instructions
on usage, see Chapter 8.

• test: Contains a test set of 85 audio *.wav files (10% of the whole database).
The included application was trained using the remaining 90% audio files
from the database.

• questionnaire: Contains the 17 audio examples used for the musical genre
questionnaire outlined in Sect. 4.2 and in Appendix B. The file numbers
correspond to the numbers listed on Tables B.1 and B.2.

• figure examples: Contains the two audio examples represented in the
figures throughout Chapter 5.
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