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ABSTRACT

We evaluate the use of different frequency-warped, nonuniform time-frequency representations for the pur-
pose of sound source separation from stereo mixtures. Such transformations enhance frequency resolution
in spectral areas relevant for the discrimination of the different sources, improving sparsity and mixture dis-
jointness. In this paper, we study the effect of using such representations on the localization and detection
of the sources, as well as on the quality of the separated signals. Specifically, we evaluate a constant-Q and
several auditory warpings in combination with a shortest path separation algorithm and show that they
improve detection and separation quality in comparison to using the Short Time Fourier Transform.

1. INTRODUCTION

Underdetermined Blind Source Separa-
tion (BSS) aims at extracting N sources
s = (s1[n], . . . , sN [n])T by observing M < N
mixtures x = (x1[n], . . . , xM [n])T . In the linear,
anechoic and noiseless case, and if no delays are
considered, the mixtures are described by an
instantaneous mixing model, given by:

x = As (1)

where A is the M×N mixing matrix. We are partic-
ularly interested in the separation of musical signals,

in which case most mixtures are available in stereo
format (M = 2), and usually more than 2 instru-
ments and voices are present (N > 2), thus result-
ing in an underdetermined problem. In this context,
an instantaneous model is applicable with record-
ings using intensity stereo, or artificially mixed using
panning. In both cases, the position in the stereo
field is determined solely by the amplitude differ-
ences between sources.

In the determined case (M = N), source sepa-
ration equals to the problem of estimating an in-
verse of the mixing matrix. If the sources are sta-
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tistically independent and non-Gaussian, this can
be achieved with Independent Component Analysis
(ICA)[1]. Once A−1 has been estimated, the sources
are directly extracted just by inverting eq. 1. How-
ever, in the underdetermined case A is unsquare and
therefore not invertible, which means that both A

and the source vector s must be estimated in order
to solve the problem. Since it is hard to estimate A

and s simultaneously, the problem is usually divided
into a mixing matrix estimation stage and a source
estimation or resynthesis stage.

Most algorithms for underdetermined separation are
based on the assumption that the signals are sparse
in some domain [2]. A signal is said to be sparse if
most of its samples are zero or near to zero, which
corresponds to a supergaussian probability density
(such as a Laplacian density). In most cases, the
sparser the sources are, the less they will overlap
when mixed (i.e., the more disjoint will be their mix-
ture), and consequently the easier will be their sep-
aration. Audio signals are not sufficiently sparse in
the time domain [3, 4], and therefore must be con-
verted to a sparser domain in order to obtain accept-
able results.

To this end, the Short Time Fourier Transform
(STFT) has been widely used to transform the mix-
tures before performing separation in the spectral
domain [5, 4, 6]. However, the equal frequency res-
olution offered by the STFT is disadvantageous for
the task of speech or music separation. The reason
for this is, on the one hand, that speech and mu-
sic signals concentrate most of their energy in the
mid-lower part of the spectrum, and therefore ove-
lappings are more likely to occur in this area. On the
other hand, musical notes follow a logarithmic fre-
quency relationship that does not correspond with
the linearly spaced subbands of a STFT spectro-
gram. Notes in the lower range often fall into the
same subbands and will thus overlap.

To overcome this, the application of multiresolu-
tion analysis to source separation has been pro-
posed, in particular through the usage of wavelets
[7]. The wavelet transform provides a constant-
Q, non-uniform time-frequency representation (often
called scalogram, in opposition to the STFT spectro-
gram), with high frequency resolution for low fre-
quencies and high time resolution for high frequen-
cies. This decomposition is adequate for music sig-

nals, and resembles human auditory perception. In
the cited work, it was shown to improve sparsity and
therefore separation when compared to the STFT.

A different approach comes from the field of Compu-
tational Auditory Scene Analysis (CASA) [8], which
imitates more closely the several stages of auditory
perception (from the acoustical processing in ear to
the neural and cognitive processes in the brain) in
order to characterize mixtures and perform sound
separation. Such systems employ more sophisti-
cated, non-constant-Q frequency warpings derived
from psychoacoustical scales, usually implemented
as nonuniform auditory filter banks. An example
of application of such a scale (the Equal Rectangu-
lar Bandwidth, ERB, scale) in the context of blind
music source separation can be found in [9].

Our goal in the present work is to perform a thor-
ough evaluation of a constant-Q and three audi-
tory time-frequency representations (ERB, Bark and
Mel) as front-ends for a specific underdetermined
BSS algorithm. In a previous article [3], we showed
that auditory representations increase the disjoint-
ness of the mixtures and are therefore appropriate
for sparsity-based algorithms. In the present con-
tribution, we measure the effects of such frequency
warpings on the quality of the separated and resyn-
thesized signals, as well as on the accuracy of the
mixing matrix estimation. We use objective qual-
ity measures to compare their performance with the
STFT.

2. SEPARATION ALGORITHM

Denoting the columns of the mixing matrix A by aj ,
we can rewrite eq. 1 as

x =

N
∑

j=1

ajsj (2)

This equation is valid for each sample of the time
domain signals or for each time-frequency bin of the
transformed signals. It becomes apparent that, if
each mixture sample or bin is contributed only by
one signal (i.e., sk 6= 0 and sj = 0 for all j 6= k), the
point x will lie on the direction defined by vector ak

in the complex mixture space CM . In the more real-
istic case in which each mixture bin contains contri-
butions from all sources, x will lie near the direction

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8

Page 2 of 8



Burred AND Sikora Comparison of frequency-warped representations for source separation of stereo mixtures

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RIGHT

LE
F

T

Fig. 1: Projected scatter plot for a 3-source,
2-channel mixture of musical instruments, trans-
formed using a Constant-Q scaling.

ak corresponding to the source sk that predominates
in that particular bin. If the mixture is sufficiently
disjoint (i.e., if the bins of the individual sources
are sufficiently non-overlapping), a scatter plot of all
B samples/bins, defined by X = (x1, . . . ,xB), will
show the bins corresponding to a particular source
concentrating around its direction. As an example,
Fig. 1 shows the scatter plot of a 3-source, 2-channel
musical mixture transformed into a Constant-Q do-
main. The direction clustering is more clear the
more super-Gaussian (sparser) the probability dis-
tributions of the sources are. It should be noted
that, in order for the direction vectors aj to remain
unchanged, the applied transformation must be lin-
ear in amplitude. All transformations used in the
present work fulfill this condition.

In the case of instantaneous mixtures of sparse
sources, the clustering phenomenon on the scatter
plot is clear enough to allow the estimation of A by
simple histogram analysis. Fig. 2 shows a smoothed
histogram corresponding to Fig. 1. The directions
aj correspond to the peaks of the histogram, and the
number of sources detected can be obtained by set-
ting an appropriate peak threshold. Note that, since
both real and imaginary, as well as positive and neg-
ative coefficients cluster around the same directions,
it suffices to cluster in the first quadrant of R2, after
the concatenation and projection defined by Xproj =
(|Re{x1}|, . . . , |Re{xB}|, |Im{x1}|, . . . , |Im{xB}|).

Due to sparsity, most of the bins accumulate near
to zero. However, bins with small modules do not
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Fig. 2: Smoothed histogram for the scatter plot of
Fig. 1.

add much information when searching for the mixing
directions, and so they can be ignored for the his-
togram analysis. This spares computation time and
does not affect the performance significantly. The
optimization threshold is denoted in Fig. 1 by the
circle around the origin.

For the source resynthesis stage, we use the short-
est path approach, which has shown a robust per-
formance with stereo anechoic mixtures [4]. For a
given mixing matrix, it partitions the mixture space
R2 into regions delimited by the mixing directions
aj . Then, for each bin x = (x1, x2) at direction
θx = arctan(x2/x1), a 2 × 2 reduced mixing matrix
Ar = [aa,ab] is defined, whose columns are the de-
limiting directions of the region it belongs to, i.e.
θL = arctan(aa2/aa1) and θR = arctan(ab2/ab1) are
the closest mixing directions to the left respectively
to the right that enclose θx. Source estimation is per-
formed inverting the determined 2 × 2 sub-problem
and setting all other N − M sources to zero:

ŝr = A−1
r x (3)

ŝj = 0 if j 6= a, b (4)

It can be shown [4] that, if the sources are indepen-
dent and assumed to follow a Laplace distribution,
defined by

p(sj) =
λ

2
e−λ|sj |, (5)

the above method is equivalent to the ℓ1-norm con-
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strained minimization problem:

ŝ = argmin
s







ℓ1(s) =
N

∑

j=1

|sj |

∣

∣

∣

∣

∣

∣

x = As







(6)

3. FREQUENCY-WARPED REPRESENTA-

TIONS

A discrete time-frequency representation X[n, k],
where n is the time frame and k is the frequency or
band index (k = 0, 1, . . . , L − 1), can be interpreted
as the output of an L-channel bank of bandpass fil-
ters. Its frequency resolution is determined by the
center frequencies of the filters fk and by their band-
widths ∆fk. The individual impulse responses hk[n]
of such a filter bank can be obtained by modulating
and scaling a prototype impulse response wNk

[n] of
length Nk = fs/∆fk, where fs is the sampling rate:

hk[n] =
1

Nk
wNk

[−n]ej2πfkn/fs (7)

The discrete-time Short Time Fourier Transform
(STFT), defined by

Xstft[n, k] =

N−1
∑

m=0

x[nR + m]w[m]e−j2πkm/N (8)

where x[m] is the time domain signal, n is the frame
index, N is the length of window w[m] and R is the
hop size, is equivalent to a bank of N filters equally
spaced at the frequencies fstft

k = kfs/N , with con-

stant bandwidth ∆fstft
k = fs/N , with a prototype

impulse response equal to the time-reversed analysis
window w[−n] and critically downsampled by a fac-
tor N . This follows from the interpretation of eq. 8
as the convolution X[n, k] = x[n] ∗ hk[n].

If we impose the condition that all filters must have
the same quality factor Q = fk/∆fk, we obtain
a nonuniform spectral representation with subband
center frequencies spaced geometrically according to

fcq
k = f02

k
b (9)

and with bandwidths

∆fcq
k = fcq

k (2
1

b − 1) (10)

where f0 is the lowest central frequency and b is
the number of filters per octave. The corresponding
window lengths are given by N cq

k = Qfs/fcq
k . In

analogy to the STFT, imposing these conditions on
eq. 7 results in the definition of the Constant-Q
Transform (CQT) [10]:

Xcq[k] =
1

N cq
k

Ncq

k
−1

∑

n=0

x[n]wNcq

k
[n]e−j 2πQn/Ncq

k (11)

In this way, we obtain a logarithmic frequency warp-
ing which, for the same number of bands, has more
frequency resolution in the low frequencies, and less
frequency resolution in the high frequencies than the
STFT (the inverse applies to time resolution).

More sophisticated frequency warpings can be de-
fined to simulate more closely the nonuniform fre-
quency resolution in the cochlea. Frequencies are
mapped into a linear auditory scale according to ex-
perimental measurements. The resulting filters are
equally spaced in the auditory scale, but nonuni-
formly spaced in frequency. In particular, the Bark
scale [11] defines an analytical approximation to
measurements of the critical bands of hearing, which
are ranges in the basilar membrane where different
frequencies interact:

∆f bark = 25 + 75

[

1 + 1.4

(

f

1000

)2
]0.69

(12)

The mapping to the auditory scale ξbark can be
approximated by [12]

ξbark = 7 arcsinh

(

f

650

)

(13)

To obtain the warped filter bank, we sample the
previous equation linearly between the values corre-
sponding to DC and fs/2 with the desired number
of bands L, and then apply the inverse mapping to
obtain the center frequencies:

f bark
k = 650 sinh

(

ξbark
k

7

)

(14)

It should be noted that the original Bark defi-
nition of eq. 12 assumes a number of 24 criti-
cal bands. For the current application, however, a
higher number of bands is needed to obtain an ac-
ceptable frequency segregation, and thus the range
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corresponding to one Bark unit must be subdivided,
and the filter bandwidths accordingly adapted. In
this way, the final filter bandwidths are obtained as
∆f bark

k = ∆f bark/Bbark, where Bbark is the num-
ber of bands per Bark unit. The window lengths
are, then, N bark

k = Bbarkfs/∆f bark.

The nominal bandwidth definition of the closely re-
lated ERB scale [11] is given by:

∆ferb = 24.7 +
f

9.26
(15)

The mapping to ERB units is:

ξerb = 9.26 ln

(

1

228.7
f + 1

)

(16)

After linear sampling to ξerb
k , the inverse mapping

is
ferb

k = 228.7 exp(ξerb
k /9.26−1) (17)

and, again, the actual filter bank bandwidths are
∆ferb

k = ∆ferb/Berb, where Berb is the number of
bands per ERB unit.

The Mel scale [11] was derived from the nonlinear
perception of pitch ratios and, in contrast to the
ERB and Bark scales, it is not defined in terms of
bandwidths, but as a direct mapping between fre-
quencies and mel units ξmel:

ξmel = 2595 log10

(

1 +
f

700

)

(18)

The sampled inverse mapping is:

fmel
k = 700

(

10ξmel
k /2595 − 1

)

(19)

The bandwidth per Mel unit (which is much smaller
than an ERB or a Bark unit) can be obtained as
∆fmel = dfmel/dξmel, which gives the relationship

∆fmel =
1

1127
(700 + f) (20)

and, finally, ∆fmel
k = ∆fmel/Bmel. The Mel scale

is well-known in audio analysis applications as the
warping stage of the Mel Frequency Cepstral Coef-
ficients (MFCC) algorithm.

Fig. 3 compares the distribution of center fre-
quencies versus subband number, for all transfor-
mations defined above, and for the particular case
fs = 16kHz and L = 257.
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Fig. 3: Filter bank center frequencies as a function
of band number, for 16 kHz sample rate and 257
bands.

A warped auditory representation X[n, k] of signal
x[n] can thus be obtained by applying one of the
previous definitions of fk and Nk to the filter bank
definition of eq. 7. In our experiments, we used a
Hann window as the prototype impulse response for
all transformations.

It must be noted that, in order to resynthesize the
sources separated in a transformed domain, the em-
ployed transformation must be invertible. Unlike
the STFT, nonuniform filter banks cannot be per-
fectly inverted. However, perfect reconstruction is
not critical in source separation, since the largest
reconstruction errors are introduced by the separa-
tion algorithm itself and are much more significant
than the errors introduced in inverting the trans-
formation [13]. Directly implemented warped filter
banks can be approximately inverted by re-filtering
with the time-reversed analysis filters and adding
the subbands with appropriate weighting according
to their bandwidth [14].

We used a direct, downsampled implementation of
the filter banks. This method is computation-
ally inefficient in comparison with the STFT. How-
ever, there exist more efficient implementations of
frequency-warped filter banks using chains of all-
pass filters [15], which can be combined with ana-
lytical expressions of the all-pass coefficient in such
a way that the warping approximates an auditory
warping [16].
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4. PERFORMANCE EVALUATION

The estimation performance of the mixing matrix
was measured by the percentage of experiments in
which the correct number of sources were detected
(detection rate, DR), and by the angular error eang

between original directions aj and their predictions
âj , averaged across each source and across each ex-
periment.

To evaluate the quality of the estimated, separated
signals ŝj we used two objective measures: the
Source to Distortion Ratio (SDR) and the Source
to Artifacts Ratio (SAR).

The SDR is an overall measure of all distortions
and errors introduced in the process, including er-
rors by interference with the undesired signals, ar-
tifacts introduced by the separation algorithm and
distortion due to imperfect transform inversion. For
each source, it is given by:

SDRj = 10 log10

‖sj‖
2

‖ŝj − sj‖
2 (21)

where ‖·‖ denotes the ℓ2 norm (energy). We con-
sider differences in scaling as irrelevant for the eval-
uation of separation quality, and therefore it must
be assured that the signals are normalized prior to
evaluation.

The artifacts introduced by the separation algorithm
are often the main cause of distortion in source sep-
aration. Many algorithms, such as the one used
here, introduce many artificial zeros in the spec-
trum before signal resynthesis (see eq. 4), which
causes the so-called musical noise or burbling arti-
facts. For this reason, we also used a measure that
specifically evaluates the influence of the artifacts
on the separation quality, isolating it from the other
sources of error, namely the Source to Artifacts Ra-
tio (SAR). The computation of the SAR is more
complex and involves orthogonal projections. The
process is explained in detail in [17]. For each ex-
periment run, the averaged values of SDR and SAR
across all sources will be computed.

5. EXPERIMENTAL SETUP AND RESULTS

For the evaluation experiments, we used 10 stereo
mixtures of N = 3 sources and 10 stereo mixtures of

Representation N = 3 sources N = 4 sources
DR (%) eang(◦) DR (%) eang(◦)

STFT 81.3 1.22 65.0 3.38
CQ 80.0 0.75 67.5 4.82
ERB 82.5 0.76 71.3 0.83
Bark 82.5 0.78 73.8 0.90
Mel 82.5 0.76 71.3 1.50

Table 1: Evaluation of the mixing matrix estima-
tion stage: averaged source detection rate (DR) and
angular error (eang) in degrees, for stereo mixtures
of N = 3 (left) and N = 4 sources (right).

N = 4 sources. The sources to be mixed were ran-
domly extracted from a database of 3 second musical
fragments played by melodic instruments and sam-
pled at 8 kHz. For each mixture, the experiment
was repeated for each previously described time-
frequency representation (STFT, constant Q (CQ),
ERB, Bark and Mel), and for a different number of
representation bands Lp, ranging from L1 = 33 to
LP = 4097. Note that for real signals, the N/2 up-
per spectral bins of the STFT are redundant, and
thus an N -points STFT corresponds to a spectro-
gram representation of L = N/2 + 1 bands (pos-
itive frequencies plus DC value). For this reason,
we choose the values Lp = Nmin2p−1 + 1 where
p = 0, 1, . . . , P − 1 as evaluation points, where Nmin

is a power of two to benefit from an efficient FFT
computation (in this case, Nmin = 64 and P = 8).
This makes a total number of 800 separation exper-
iments.

Each source was normalized, artificially panned and
mixed. The mixing matrix was defined with equally
spaced directions, i.e., θ1 = 3π/4, θ2 = π/2 and θ3 =
π/4 for N = 3 and θ1 = 4π/5, θ2 = 3π/5, θ3 = 2π/5
and θ4 = π/5 for N = 4, where 0 corresponds to
hard right and π to hard left. To find the direction
clusters, the scatter plot was rastered using a radial
grid with 0.5◦ resolution. The resulting values for
DR and eang are shown on Table 1. For N = 3, the
DR does not improve significantly, but eang has been
nearly halved. The N = 4 problem is more difficult,
as expected, but the performance difference to the
STFT has been increased. In particular, the angular
error has been reduced by a factor of 4 with the ERB
and Bark warpings.

Figures 4 and 5 show the results of the evaluation
of the source estimation stage, specifically, the SDR
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Fig. 4: Evaluation of the source resynthesis stage:
Source to Distortion Ratio (SDR) as a function of
number of subbands L, for stereo mixtures of N = 3
sources.

Repr. N = 3 sources N = 4 sources
SDR (dB) SAR (dB) SDR (dB) SAR (dB)

STFT 16.18 16.74 10.61 10.81
CQ 17.79 18.59 12.77 13.42
ERB 18.16 18.83 13.01 13.53
Bark 17.81 18.36 12.83 13.34
Mel 18.30 18.92 13.08 13.57

Table 2: Evaluation of the source resynthesis stage:
maximum achieved SDR and SAR for for stereo mix-
tures of N = 3 (left) and N = 4 sources (right).

and SAR as a function of number of filter bank sub-
bands. Table 2 shows the maximal achieved values in
the curves. It can be seen that performance has been
increased in all cases in comparison to the STFT.
Again, the improvement is larger with 4 than with
3 sources. All nonuniform representations reach the
highest performance with L = 513 frequency bands.
In contrast, the STFT has its peak at L = 1025.
For higher number of bands, all curves begin to de-
crease. This is due to the fact that global time res-
olution decreases as L grows, and thus time-domain
overlaps are stronger. All three auditory warpings
(ERB, Bark and Mel) showed similar behaviors, with
Mel obtaining a slightly better performance in both
measures, followed by ERB and Bark. However, the
difference with CQ is greater. As can be seen in Fig.
3, CQ is the transformation offering the highest fre-
quency resolution in the low frequency area. It turns
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Fig. 5: Evaluation of the source resynthesis stage:
Source to Artifacts Ratio (SAR) as a function of
number of subbands L, for stereo mixtures of N = 3
sources.

out that a more equilibrated trade-off between low
frequency and high frequency resolution, as offered
by the auditory warpings (whose warping curves lie
in the middle region between CQ and STFT) is ad-
vantageous for our purposes.

6. CONCLUSIONS AND FUTURE WORK

It has been shown that the usage of frequency-
warped representations as front-end for underdeter-
mined sound source separation improves the per-
formance of both stages of the algorithm: mixing
matrix estimation and ℓ1-norm minimization-based
source estimation, when compared to using the
STFT. They improved all objective measures evalu-
ated: source detection rate, angular error, resynthe-
sis error due to artifacts and overall distortion er-
ror. Also, auditory warpings like ERB, Bark or Mel
perform better than constant-Q warpings and offer
an optimal trade-off between resolution in low and
high frequencies. These results further support the
convenience of combining psychoacoustical knowl-
edge with mathematical separation algorithms in the
form of hybrid CASA/BSS systems.

The separation performed by the system treated
here is solely based on spatial information and on a
broad sparsity assumption on the sources (a Lapla-
cian distribution). In order to further improve per-
formance and robustness, more sophisticated knowl-
edge about the nature of the sources must be added.
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This can take the form of source-dependent mod-
els of spectral content or temporal structure. This
is particularly important in the case of real perfor-
mances of tonal music, where the overlapping of par-
tials in the same band is very likely to occur, even
in a frequency-warped scale. This issue will be the
main point in our future research.

Sound examples corresponding to the experiments
can be found under www.nue.tu-berlin.de/
research/projects/sourcesep/demo1/
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