Musical Source Separation: Principles and State of the Art

Juan José Burred Équipe Analyse/Synthèse, IRCAM burred@ircam.fr

> ircam Ecentre Pompidou

2nd International Workshop on Learning Semantics of Audio Signals (LSAS), Paris, 21st June 2008

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- Mixing models
- 2. Solving the linear mixing model
 - o Joint and staged separation
- 3. Estimation of the mixing matrix
 - The need for sparsity
 - o Independent Component Analysis
 - o Clustering methods, other methods
- 4. Estimation of the sources
 - Norm minimization
 - o Time-frequency masking
- 5. Methods using advanced source models
 - o Adaptive basis decomposition methods
 - o Sinusoidal methods
 - o Supervised methods
- 6. Conclusions

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- o Mixing models

Sound Source Separation

- "Cocktail party effect"
 - o E. C. Cherry, 1953.
 - Ability to concentrate attention on a specific sound source from within a mixture.
 - Even when interfering energy is close to energy of desired source.
- "Prince Shotoku Challenge"
 - Legendary Japanese prince Shotoku (6th Century AD) could listen and understand simultaneously the petitions by ten people.
 - Concentrate attention on several sources at the same time!
 - o "Prince Shotoku Computer" (Okuno et al., 1997)
- Both allegories imply an extra step of semantic understanding of the sources, beyond mere acoustical isolation.

[Cherry53] E. C. Cherry. Some Experiments on the Recognition of Speech, With One and Two Ears. Journal of the Acoustical Society of America, Vol. 25, 1953.

[Okuno97] H. G. Okuno, T. Nakatani and T. Kawabata. Understanging Three Simultaneous Speeches. Proc. Int. Joint Conference on Artificial Intelligence (IJCAI), Nagoya, Japan, 1997.

Juan José Burred.

Musical Source Separation.

The paradigms of Musical Source Separation

- (based on [Scheirer00])
 - Understanding without separation
 - Multipitch estimation, music genre classification
 - "Glass ceiling" of traditional methods (MFCC, GMM) [Aucouturier&Pachet04]
 - Separation for understanding
 - First (partially) separate, then feature extraction
 - Source separation as a way to break the glass ceiling?
 - Separation without understanding
 - BSS: Blind Source Separation (ICA, ISA, NMF)
 - Blind means: only very general statistical assumptions taken.
 - Understanding for separation
 - Supervised source separation (based on a training database)

[Scheirer00]E. D. Scheirer. Music-Listening Systems. PhD thesis, Massachusetts Institute of Technology, 2000.[Aucouturier&Pachet04]J.-J. Aucouturier and F. Pachet. Improving Timbre Similarity: How High is the Sky? Journal of Negative Results in Speech
and Audio Sciences, 1 (1), 2004.

Juan José Burred.

Required sound quality

- Regarding the quality of the separated sounds, source separation tasks can be divided into:
- Audio Quality Oriented (AQO)
 - Aimed at full unmixing at the highest possible quality.
 - Applications:
 - o Unmixing, remixing, upmixing
 - o Hearing aids
 - o Post-production
- Significance Oriented (SO)
 - Separation quality just enough for facilitating semantic analysis of complex signals.
 - o Less demanding, more realistic.
 - Applications:
 - o Music Information Retrieval
 - o Polyphonic Transcription
 - o Object-based audio coding

Musical Source Separation Tasks

• Classification according to the nature of the mixtures:

	Source position	Mixing process	Source/mixture ratio	Noise	Musical texture	Harmony
- Difficulty +	 changing static	 echoic (changing impulse response) echoic (static impulse response) delayed instantaneous 	underdeterminedoverdeterminedeven-determined	noisynoiseless	 monodic (multiple voices) heterophonic homophonic / homorhythmic polyphonic / contrapuntal monodic (single voice) 	 tonal atonal

Classification according to available a priori information:

	Source position	Source model	Number of sources	Type of sources	Onset times	Pitch knowledge
- Difficulty +	 unknown statistical model known mixing matrix 	 none statistical independence sparsity advanced/trained source models 	unknownknown	unknownknown	 unknown known (score/MIDI available) 	 none pitch ranges score/MIDI available

+ A priori knowledge -

Linear mixing model

• Only amplitude scaling before mixing (summing)

$$x_{m}(t) = \sum_{n=1}^{N} a_{mn} s_{n}(t), \quad m = 1, \dots, M.$$
$$\begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{M}(t) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{M1} & a_{M2} & \dots & a_{MN} \end{pmatrix} \cdot \begin{pmatrix} s_{1}(t) \\ s_{2}(t) \\ \vdots \\ s_{N}(t) \end{pmatrix}$$

• Linear stereo recording setups:

Juan José Burred.

Delayed mixing model

• Amplitude scaling and delay before mixing

$$x_m(t) = \sum_{n=1}^N a_{mn} s_n(t - \delta_{mn}), \qquad m = 1, \dots, M. \qquad \mathbf{A} = \begin{pmatrix} a_{11}\delta(t - \delta_{11}) & \dots & a_{1N}\delta(t - \delta_{11}) \\ \vdots & \ddots & \vdots \\ a_{M1}\delta(t - \delta_{M1}) & \dots & a_{MN}\delta(t - \delta_{MN}) \end{pmatrix}$$
$$\mathbf{x} = \mathbf{A} * \mathbf{s}$$

Delayed stereo recording setups:

Juan José Burred.

Musical Source Separation.

Convolutive mixing model

• Filtering between sources and sensors

$$x_{m}(t) = \sum_{n=1}^{N} h_{mn}(t) * s_{n}(t) = \sum_{n=1}^{N} \sum_{k=1}^{K_{mn}} a_{mnk} s_{n}(t - \delta_{mnk}), \quad m = 1, \dots, M. \qquad \mathbf{A} = \begin{pmatrix} n_{11}(t) & \dots & n_{1N}(t) \\ \vdots & \ddots & \vdots \\ h_{M1}(t) & \dots & h_{MN}(t) \end{pmatrix}$$
$$\mathbf{x} = \mathbf{A} * \mathbf{S}$$

• Convolutive stereo recording setups:

Juan José Burred.

(h) (+)

(+)

ん

Some terminology

- System of linear equations: $\mathbf{X} = \mathbf{AS}$
 - o Usual algebraic methods from high school: ${f X}$ known, ${f A}$ known, ${f S}$ unknown
 - $_{\rm 0}$ But in source separation: unknown variables (S, sources) AND unknown coefficients (A, mixing matrix)
- Algebra terminology is retained for source separation:
 - More equations (mixtures) than unknowns (sources): overdetermined
 - o Same number of equations (mixtures) than unknowns (sources): determined (square A)
 - o Less equations (mixtures) than unknowns (sources): underdetermined
- The underdetermined case is the most demanding, but also the most important for music!
 - Music is (still) mostly in stereo, with usually more than 2 instruments
 - Overdetermined and determined situtations are only of interest for arrays of sensors or arrays of microphones (localization, tracking)
- Alternative interpretation of the linear model as a linear transform from signal space to mixture space, with A the transformation matrix and the columns of A the transformation bases.

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- o Mixing models
- 2. Solving the linear mixing model
 - o Joint and staged separation

Solving the linear model

- Direct way to tackle the problem:
 - Mean Square Error (MSE) minimization: $\min_{\mathbf{A},\mathbf{S}} \|\mathbf{X} \mathbf{AS}\|_F^2$
 - o F is the Frobenius norm ("matrix energy")
 - o BUT: this has infinitely many solutions
- One must assume probability distributions for the involved variables
 - o Maximum A Posteriori (MAP) approach: maximize $P(\mathbf{A}, \mathbf{S} | \mathbf{X})$
 - o Applying Bayes' theorem $P(\mathbf{A},\mathbf{S}|\mathbf{X}) = \frac{P(\mathbf{X}|\mathbf{A},\mathbf{S})P(\mathbf{A})P(\mathbf{S})}{P(\mathbf{X})}$ and
 - Assuming A has a uniform distribution (all source positions are equally equal) and
 - o Assuming the sources are statistically independent this finally yields

$$\min_{\mathbf{A},\mathbf{S}} \left\{ \frac{1}{2\sigma^2} \left\| \mathbf{X} - \mathbf{AS} \right\|_F^2 - \sum_{n,t} l_n(s_n(t)) \right\}$$

o σ^2 is the noise variance (if any) and l_n is the assumed log-density of the sources

Staged separation

- However, such a joint estimation of A and S is:
 - o Extremely computationally demanding
 - o Unstable with respect to convergence
- Most methods follow thus a staged approach: first estimate the mixing matrix, then estimate the sources.

• Note that, if A is square (determined source separation) and invertible (virtually always for usual mixtures), then the sources can be readily obtained by $\hat{\mathbf{S}} = \hat{\mathbf{A}}^{-1}\mathbf{X}$

(^ denotes estimation)

- In that case, source separation amounts to mixing matrix estimation!
- In the underdetermined case, A is rectangular and thus non-invertible. Thus, a second source estimation stage is needed!

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- o Mixing models
- 2. Solving the linear mixing model
 - o Joint and staged separation
- 3. Estimation of the mixing matrix
 - The need for sparsity
 - o Independent Component Analysis
 - o Clustering methods, other methods

Mixing matrix estimation

• Simple examples can be visualized by means of scatter plots

> Underdetermined mixture (2 channels, 3 sources)

- The coordinates of each data point are the values of a certain signal coefficient (time sample, time-frequency bin) in each of the mixtures.
- Data points tend to concentrate around the vectors defined by the columns of the mixing matrix: the mixing directions.
- The goal of mixing matrix estimation is thus to find such vectors.

The need for sparsity

- A signal is said to be sparse if most of its coefficients (in some domain) are zero or close to zero.
- Sparse signals will have a peaked probability distribution.
 - Example: Laplacian signals are sparser than Gaussian signals

Laplace distribution: $p(c) = \frac{\lambda}{2}e^{-\lambda|c-\mu|}$

- Geometrical perspective:
 - The sparser the signals, the more their coefficients will be concentrated around the mixing directions, and the easier will be the detection of the directions.
- Analytical perspective:
 - o Remember the MAP problem:

$$\min_{\mathbf{A},\mathbf{S}} \left\{ \frac{1}{2\sigma^2} \| \mathbf{X} - \mathbf{AS} \|_F^2 + \sum_{n,t} l_n(s_n(t)) \right\}$$

C

Penalty for sparsity

- Measures of sparsity
 - o L1-norm

o Kurtosis L1-norm:
$$\|\mathbf{c}\|_1 = \sum_{i=1}^{n} |c_i|$$

o Negentropy

Juan José Burred.

How to increase sparsity

- Time-frequency domain much sparser than time domain
 - Short Time Fourier Transform (STFT)
- Logarithmic resolution front-ends
 - o Constant-Q Transform (CQT)
 - o Discrete Wavelet Transform (DWT)
- Auditory resolution front-ends
 - o Bark
 - o ERB (Equal Rectangular Bandwidth)
 - o Mel
- Adaptive signal decompositions
 - o Basis Pursuit
 - o Matching Pursuit

Spectrogram (|STFT|)

Independent Component Analysis (1)

• ICA tries to find the mixing directions by aligning the coefficient clusters to the (orthogonal) scatter axes.

- Note that Principal Component Analysis (PCA), which finds the directions of greatest variance, is not enough for the alignment.
- However, PCA is used as a first step for ICA because, when followed by whitening (variance normalization), it makes the mixing directions orthogonal, and thus ICA reduces to finding the remaining rotation.
- Also, note that this is only possible for determined mixtures \rightarrow not very useful for music!
- Axis alignment corresponds to the sources being statistically independent.

Independent Component Analysis (II)

- ICA works by maximizing some objective measure of statistical independence between candidate sources.
- Methods based on maximizing nongaussianity of the sources
 - FastICA based on kurtosis or negentropy
- Methods based on minimizing mutual information between sources
- Methods based on Maximum Likelihood (ML) estimation
 - o Bell-Sejnowski (BS) algorithm
 - o Natural gradient algorithm
 - FastICA based on ML
- Tensorial methods ("decorrelate" higher order statistics)
 - o FOBI (Fourth-Order Blind Identification)
 - o JADE (Joint Approximate Diagonalization of Eigenmatrices)
- Sound examples (Hyvärinen et al.)

Hyvärinen + Karhunen + Oja

Juan José Burred.

Clustering methods

- Explore the mixture space to find the clusters.
- Allow underdetermined separation!
- Direct inspection of the scatter plot: sparsity is crucial!
- Example: kernel-based angular clustering
 - o [Bofill&Zibulevsky01]
 - o Kind of smoothed histogram

Mixture scatter and found directions

• Also: methods based on k-Means, fuzzy C-means clustering...

[Bofill&Zibulevsky01] P. Bofill and M. Zibulevsky. Underdetermined Blind Source Separation Using Sparse Representations. Signal Processing, Vol. 81, 2001.

Other methods for mixing matrix estimation

- Phase cancellation methods
 - ADRess (Azimuth Discrimination and Resynthesis) [Barry04]
 - Artificial stereo panning retains phase and only changes amplitude between channels → phase cancellation in the interchannel difference spectrogram

(Fig. from [Barry04])

- Methods from image processing applied to the scatter plots
 - Example: application of the Hough transform to detect straight lines created by the direction clusters [Lin97]
- [Barry04] D. Barry, B. Lawlor and E. Coyle. Sound Source Separation: Azimuth Discrimination and Resynthesis. Proc. Int. Conf. on Digital Audio Effects (DAFX), Naples, Italy, 2004.
- [Lin97] J. K. Lin, D. G. Grier and J. D. Cowan. Feature Extraction Approach to Blind Source Separation. Proc. IEEE Workshop on Neural Networks for Signal Processing (NNSP), 1997.

Juan José Burred.

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- o Mixing models
- 2. Solving the linear mixing model
 - o Joint and staged separation
- 3. Estimation of the mixing matrix
 - The need for sparsity
 - o Independent Component Analysis
 - o Clustering methods, other methods

4. Estimation of the sources

- Norm minimization
- o Time-frequency masking

Source estimation by norm minimization

- In the underdetermined case, A is rectangular and thus non-invertible. Thus, a second source estimation stage is needed!
- Norm minimization methods
 - o Recall (again) the minimization problem $\min_{\mathbf{A},\mathbf{S}} \left\{ \frac{1}{2\sigma^2} \|\mathbf{X} \mathbf{AS}\|_F^2 \sum_{n,t} l_n(s_n(t)) \right\}$
 - Assuming no noise, known A and Laplacian (sparse) sources, this simplifies to an L1-norm minimization problem:

$$\hat{\mathbf{S}} = \operatorname{argmin}_{\mathbf{X} = \hat{\mathbf{A}}\mathbf{S}} \left\{ \sum_{n,t} |s_n(t)| \right\}$$

- o A realization thereof is the shortest-path algorithm
- Sound examples for angular kernel clustering plus shortest-path estimation:

Time-frequency masking (I)

• Goal: find a mask M that retrieves one source when used to filter a given time-frequency representation.

$$\hat{\mathbf{S}}_n(r,k) = \mathbf{M}_{mn}(r,k) \circ \mathbf{X}_m(r,k)$$

- Adaptive Wiener filtering
- Binary time-frequency masking
 - DUET (Degenerate Unmixing Estimation Technique) [Yilmaz&Rickard04]
 - Histogram of Interchannel Intensity (IID) and Phase (IPD) Differences
 - Binary Mask created by selecting bins around histogram peaks.

• is the Hadamard (element-wise) product

Drawback of t-f masking: "musical noise" or "burbling" artifacts

[Yilmaz&Rickard04] Ö. Yilmaz and S. Rickard. Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Trans. on Signal Processing. Vol. 52(7), July 2004

Time-frequency masking (2)

- Human-assisted time-frequency masking [Vinyes06]
 - Human-assisted selection of the time-frequency bins out of the DUETlike histogram for creating the unmixing mask
 - o Implementation as a VST plugin ("Audio Scanner")

[Vinyes06] M. Vinyes, J. Bonada and A. Loscos. Demixing Commercial Music Productions via Human-Assisted Time-Frequency Masking. *120th AES convention*, Paris, France, 2006.

Juan José Burred.

Musical Source Separation.

Presentation overview

I. Introduction

- o Paradigms, tasks, applications
- Mixing models
- 2. Solving the linear mixing model
 - o Joint and staged separation
- 3. Estimation of the mixing matrix
 - The need for sparsity
 - o Independent Component Analysis
 - o Clustering methods, other methods
- 4. Estimation of the sources
 - Norm minimization
 - o Time-frequency masking
- 5. Methods using advanced source models
 - o Adaptive basis decomposition methods
 - o Sinusoidal methods
 - Supervised methods

Advanced source models methods

- Until now: blind approaches (only general, statistical assumptions)
- The use of (sometimes music-specific) advanced source models allow to improve separation quality and to handle highly underdetermined situations (e.g. separation from mono mixtures)
- Classification according to a priori knowledge
 - o Supervised
 - o Based on training the model with a sound example database
 - o Better quality and more demanding situations at the cost of less generality
 - o Unsupervised
- Classification according to model type
 - o Adaptive basis decompositions (ISA, NMF, NSC)
 - o Sinusoidal Modeling
- Classification according to mixture type
 - o Monaural systems
 - o Hybrid systems combining advanced source models with spatial diversity

Independent Subspace Analysis

- Application of ISA to audio: Casey and Westner, 2000.
- Application of ICA to the spectogram of a mono mixture.
- Each independent component corresponds to an independent subspace of the spectrogram.

- Component-to-source clustering
 - The extracted components usually do not directly correspond to the sources.
 - They must be clustered together according to some similarity criterion.
 - Casey&Westner use a matrix of Kullback-Leibler divergences called the ixegram.

[Casey&Westner00] M. Casey and A. Westner. Separation of Mixed Audio Sources by Independent Subspace Analysis. Proc, Int. Computer Music Conference (ICMC), Berlin, Germany, 2000.

Juan José Burred.

Musical Source Separation.

Nonnegative Matrix Factorization

- Matrix factorization ($\mathbf{X} = \mathbf{AS}$) imposing non-negativity.
- Needed when using magnitude or power spectrograms.
- NMF does not aim at statistical independence, but:
 - It has been proven that, under some conditions, non-negativity is sufficient for separation.
 - NMF yields components that very closely correspond to the sources.
 - To date, there is no exact theoretical explanation why is that so!
- Use for transcription:
 - P. Smaragdis and J.C. Brown. Non-Negative Matrix Factorization for Polyphonic Music Transcription. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, 2003.
- Use for separation:
 - B. Wang and M. D. Plumbley. Musical Audio Stream Separation by Non-Negative Matrix Factorization. *Proc. UK Digital Music Research Network (DMRN) Summer Conf.*, 2005.

Nonnegative Sparse Coding

- Combination of non-negativity and sparsity constraints in the factorization.
- [Virtanen03]: NSC is optimized with an additional criterion of temporal continuity.
 - Measured by the absolute value of the overall amplitude difference between consecutive frames.

- [Virtanen04]: Convolutive Sparse Coding
 - Improved temporal accuracy by modeling the sources as the convolution of spectrograms with a vector of onsets.

$$(M_n)_{t,f} = \left(\sum_{n=1}^{N} [a_n \otimes s_{n,f}]\right)_t$$

Mixture O Component I C Component 2

- [Virtanen03] T. Virtanen. Sound Source Separation Using Sparse Coding with Temporal Continuity Objective. Proc. Int. Computer Music Conference (ICMC), Singapore, 2003.
- [Virtanen04] T. Virtanen. Separation of Sound Sources by Convolutive Sparse Coding. Proc. ISCA Tutorial and Research Workshop on Statistical and Perceptual Audio Processing (SAPA), Jeju, Korea, 2004.

Sinusoidal Methods

- Sinusoidal Modeling: detection and tracking of the sinusoidal partial peaks on the spectrogram.
- Based on Auditory Scene Analysis (ASA) cues of good-continuation, common fate and smoothness of sinusoidal tracks.
- Overall, very good reduction of interfering sources, but moderate timbral quality.
- Generation of the second secon

- Appropriate for Significance-Oriented applications
- [Virtanen&Klapuri02]: model of spectral smoothness of harmonic sounds
 - Based on basis decomposition of harmonic structures
 - o Additive resynthesis of partial parameters
- [Every&Szymanski06]
 - o Spectral subtraction instead of additive resynthesis

[Virtanen&Klapuri02]	T. Virtanen and A. Klapuri. Separation of Harmonic Sounds Using Linear Models for the Overtone Series. Proc.
	IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Orlando, USA, 2002.
[Every&Szymanski06]	M. R. Every and J. E. Szymanski. Separation of Synchronous Pitched Notes by Spectral Filtering of Harmonics.
	IEEE Trans. on Audio, Speech and Signal Processing. Vol. 14(5), 2006.

Juan José Burred.

Separated

sources

Mixture 🜔

Supervised Methods (I)

- Use of a training database to create a set of source models, each one modeling a specific instrument.
 - Better separation as a trade-off for generality.
- Supervised sinusoidal methods
 - o [Burred&Sikora07]
 - The source models are compact descriptions of the spectral envelope and its temporal evolution.
 - The detailed temporal evolution allows to ignore harmonicity constraints, and thus separation of chords and inharmonic sounds is possible.

sources

sources

Separation of chordsInharmonic separationImage: SeparatedInharmonic separationImage: SeparatedImage: SeparatedImage: SeparatedImage: SeparatedImage: SeparatedImage: Separated

Juan José Burred.

Musical Source Separation.

Supervised Methods (2)

Bayesian Networks

- o [Vincent06]
- Multilayered model describing note probabilities (state layer), spectral decomposition (source layer) and spatial information (mixture layer).
- o Trained on a database of isolated notes.
- o Allows separation of sounds with reverb.
- Learnt priors for Wiener-based separation
 - o [Ozerov05]
 - o Single-channel
 - HMM models of singing voice and accompaniment.

- [Vincent06] E. Vincent. Musical Source Separation Using Time-Frequency Source Priors. *IEEE Trans. on Audio, Speech and Language Processing,* Vol. 14 (1), 2006.
- [Ozerov05] A. Ozerov, O. Philippe, R. Gribonval and F. Bimbot. One Microphone Singing Voice Separation Using Source-Adapted Models. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, 2005.

Juan José Burred.

Musical Source Separation.

Conclusions

- Still far from fully-general, audio-quality-oriented system.
- More realistic: significance oriented
 - Separation good enough to facilitate content analysis
- Methods based on adaptive models, time-frequency masking:
 - More realistic mixtures, but more artifacts and interferences
- Methods based on sinusoidal modeling:
 - More artificial timbre, but less interferences.
- Current polyphony limitations:
 - o Mono signals: up to 3, 4 instruments
 - o Stereo signals: up to 5, 6 instruments

Literature

- Very few overview materials on Musical Source Separation
- P. D. O'Grady, B. A. Pearlmutter and S. T. Rickard. Survey of sparse and non-sparse methods in source separation. International Journal of Imaging Systems and Technology, 15(1). 2005.
- E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley and M. E. Davies.
 Model-based audio source separation. Technical Report C4DM-TR-05-01, Queen Mary University, London, UK, 2006.
- T. Virtanen. Unsupervised Learning Methods for Source Separation in Monaural Music Signals. Chapter in A. Klapuri, M. Davy (Eds.), Signal Processing Methods for Music Transcription, Springer 2006.

• Stereo Audio Source Separation Evaluation Campaign:

http://sassec.gforge.inria.fr