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ABSTRACT
This paper addresses the extraction of a common signal among sev-
eral mono audio tracks when this common signal undergoes a track-
specific filtering. This problem arises in the extraction of a common
music and effects track from a set of soundtracks in different lan-
guages. To this aim, a novel approach is proposed. The method
is based on the dictionary modeling of track-specific and common
signals, and is compared to a previous one proposed by the authors
based on geometric considerations. The approach is integrated into
a Non-Negative Matrix Factorization framework using the Itakura-
Saito divergence. The method is evaluated on a synthetic database
composed of filtered music and effects tracks, the filters being track-
specific, and track-specific dialogs. The results show that this task
becomes tractable, while the previously introduced method could
not handle track-specific filtering.

Index Terms— audio source separation, common signal ex-
traction, Non-Negative Matrix Factorization

1. INTRODUCTION

For several applications in the content industry, having access to the
separated audio tracks of an audio mixture is fundamental. Here,
we are concerned with the analysis and separation of film, televi-
sion or video soundtracks. They are the composite of several well-
identified tracks: the dialogs, the sound effects and the music, for
which there are specific treatments and uses. For example, the com-
posite track of sound effects mixed with the music (often called the
Music and Effects track, or MNE) is interesting to have, in order
to release foreign-language versions of a given film or television
series. In this case, local dialogs are recorded and mixed with the
MNE. For old movies, the MNE tracks are often unavailable, dam-
aged or lost. In this context, there is an interest in extracting the
MNE track from an existing master.

We address the problem of extracting the MNE track from a set
of soundtracks of the same film in different languages. In this case,
the MNE track is common to the several versions, apart from several
treatments (equalization, processing) and defects (missynchroniza-
tion or drifting, noise, clicks, etc.). Following previous work [1, 2],
the goal is to achieve realistic applications of this extraction pro-
cess. In our previous approach [2], the MNE tracks are assumed
to be identical (up to a gain factor) among the versions, the dialog
tracks being signals specific to the versions. The assumption of the
strict equality of the common signal among the versions makes the
extraction of the common signal fail in more realistic cases because
of the aforementioned treatments and defects. Indeed, a different
filtering is often applied to the common signal by the local mix engi-
neer, which is often the case when the MNE track is mixed with the

language-specific signal. This effect can be somewhat compensated
[1] using pre-computation of filters on signal parts when only the
common signal is active, but such method can lack in robustness es-
pecially when this type of data is missing. In this study, we integrate
the filtering of the common signal as part of the signal model, so that
it can be computed in the global estimation process. The new sig-
nal model is ascribed to a Non Negative Factorization framework,
whose latest developments enable to perform the joint optimization
of the track-specific signal model (the version-specific dialogs) and
the common signal (the MNE track with version-specific filtering),
and does not require any preprocessing step.

The paper is organized as follows. In Section 2, the signal
model will be presented. Then in Section 3, an algorithm to es-
timate the parameters will be proposed. Finally, in Section 4, the
results of experimental evaluations will be discussed.

2. SIGNAL MODEL

The proposed signal model involves two main components: the
common part, and the specific parts for a number of input channels.
For the application case of a MNE extraction problem, the common
part is the MNE and the specific parts are the version dialogs.

2.1. Problem statement

In this study, the problem of extracting the common signal, up to a
filtering, from several language-specific versions can be formulated
as a multichannel convolutive source separation problem [3]. The
input signal s of the source separation system is a J-channel signal
(J being the number of mono versions). From this signal, we want
to extract a set of J MNE signals sci, which can be interpreted as
the result of filtering an original common signal sc by the channel-
specific filters gi. The channel-specific signals (the version-specific
dialogs) ssi are also extracted. Thus, 2J sources have to be output
from J input channels, which corresponds to an underdetermined
source separation problem. The flowchart representing the mix-
ing process corresponding to such problem formulation is shown
on Figure 1. This study proposes to estimate all its variables.

2.2. Background: Non-negative Factorization modeling of
power spectrograms

The signal model is based on a Non-Negative Factorization (NMF)
framework which is briefly summarized here. The chosen metric
to evaluate the distortion is the Itakura-Saito (IS) divergence [4].
This model involves the transformation of the input signal s into the
time-frequency domain by means of a Short Time Fourier Trans-
form (STFT), yielding a matrix S. The squared modulus of each
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Figure 1: Flowchart of the mixing process. gi are the channel-
specific filters, sc the unfiltered common signal, sci are the set of
filtered common signals, ssi are the unmixed dialogs in different
languages and si are the mixes input to the separation system.

element is then computed to obtain a Power Spectral Density (PSD)
observation matrix X, which in this context can be interpreted as
variances. The problem of NMF is to find the matrices W and H
such that

X 'M = WH, (1)

where M is the PSD matrix of the model. W and H have di-
mensions F ×K and K ×N , respectively, and it is desirable that
F × K + K × N � FN . Audio signals can often be described
by such model, since it adequately accounts for information redun-
dancy in the frequency domain resulting from repetitive events typ-
ical in speech and music signals.

The factorization is formulated as the following minimization
problem:

{W,H} = argmin
W,H≥0

DIS(X|M), (2)

where DIS is a matrix cost function involving the IS divergence
dIS :

DIS(X|M) =

F∑
f=1

N∑
n=1

dIS(X(f,n)|M(f,n)). (3)

The IS divergence is defined as:

dIS(x, y) =
x

y
− log

x

y
− 1. (4)

This divergence is a good measure for the perceptual difference
between two signals, which is explained by its scale invariance:
dIS(γx|γy) = dIS(x|y), for a given scalar γ.

The matrix W obtained after an approximation following this
model contains a set of PSDs as its columns, and is commonly
called the dictionary, whereas H contains activations (weights) of
these PSDs across time as its rows. If K is carefully chosen, the
PSDs constitute a good characterization of the audio sources in-
volved in the mixture. The choice of K depends on the complexity
of the modeled source, and can be optimized using source separa-
tion quality evaluation methods.

2.3. Common signal model

The assumptions on which the common signal model are based are
the following:

• It is redundant in the time-frequency domain.
• It is common to all the input channels up to a linear filtering.

This assumption is less restrictive than in [2] (where only a
gain factor was allowed) and enables to make the system more
flexible against filtering operations applied to the common sig-
nal. This filtering is normally applied by sound engineers and
needs to be estimated.

These assumptions yield a multi-channel convolutive NMF
model for the variance of the common signal Mc, for which the
filters gi are specific to each channel. The PSD dictionary W and
the activations H are common to all filtered MNE signals. The vari-
ance model writes, for each channel i:

Mci = diag(gi)WcHc, (5)

where Mci is the variance of the model of the source in channel
i, diag(gi) is a diagonal matrix with gi as the diagonal vector and
Wc and Hc are, respectively, the PSD dictionaries and activations
of the common signal.

This filtering can either be seen as a convolutive mix of sources
[3] (in which case the filtering is a part of the mixing system) or
as a source adaptation filter [5] (in which case the filtering is a part
of the source). In the evaluation part, the second option will be
considered: the estimation of the sci signals will be compared to
the known references.

2.4. Specific signal model

The following assumptions concern the model for the language-
specific signals:

• It is redundant in the time-frequency domain. In the case of
the dialog signals, this is also a reasonable assumption since
the voice signals are composed of a limited number of spectral
patterns.

• The PSDs at different time frames are different across the chan-
nels. This assumption is less restrictive and more realistic
than approximate W-disjoint Orthogonality (WDO), exploited
in [2], since it implies that the PSD dictionary supports of the
modeled sources are disjoint, rather than the time-frequency
supports as in WDO.

The variance model writes, for each channel i:

Msi = WsiHsi. (6)

The disjointness of the dictionary support is not explicitly expressed
in the model, but rather implicitly: the dictionaries for each version
are not linked.

2.5. Whole signal model

The whole signal variance model is thus the following for each
channel:

Mi = Msi +Mci = WsiHsi + diag(gi)WcHc. (7)

Note that this definition assumes additivity of PSDs, and thus sta-
tistical independence between the common signal and the specific
signal models.



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

3. ALGORITHM

3.1. Optimization function

The algorithm involves a minimization of the cost function J de-
fined as follows:

J =
∑
i

DIS(Xi|Msi +Mci) (8)

=
∑
i

DIS(Xi|WsiHsi + diag(gi)WcHc). (9)

The optimization algorithm is based on a gradient descent algo-
rithm. The multiplicative update rule framework is used here. Up-
date rules for respective variables are obtained on the basis of the
work done in [6] for the channel-specific NMF parts and in [3, 5]
for the convolutive NMF part.

For the channel-specific NMF part, the update rules are:

Wsi ← Wsi. ∗
(Ms

.−2
i . ∗Xi)Hs

T
i

Ms
.−1
i Hs

T
i

(10)

Hsi ← Hsi. ∗
Ws

T
i (Ms

.−2
i . ∗Xi)

Ws
T
i Ms

.−1
i

. (11)

For the convolutive NMF-related part, the update rules are:

Wc ← Wc. ∗
∑

i(Mc
.−2
i . ∗Xi)H

T
c∑

i Mc
.−1
i HT

c

(12)

Hc ← Hc. ∗
∑

i(diag(gi)Wc)
TMc

.−2
i . ∗Xi∑

i(diag(gi)Wc)TMc
.−1
i

(13)

gi ← gi. ∗
∑

i(Xi. ∗ (WcHc))./Mc
.2
i∑

i(WcHc./Mci)
. (14)

The .∗ operator denotes an element-wise product. All divisions and
exponentiations are also element-wise. The update rules are called
successively until a given number of iterations is reached.

3.2. Wiener mask-based separation

Once the variance of each source is estimated (channel-specific
sources and common source with adapted filters), the STFT of the
sources are obtained using Wiener filtering of the mix STFT with
the help of Wiener masks C on each channel:

Ssi = Csi. ∗ Si = WsiHsi./Mi. ∗ Si (15)
Sci = Cci. ∗ Si = (diag(gi)WcHc)./Mi. ∗ Si. (16)

The temporal signals ssi and sci of the sources are then ob-
tained through an overlap-add operation applied to the Ssi and Sci

STFTs.

4. EXPERIMENTAL STUDY

4.1. Datasets and metrics

The extraction of the common signal has been tested on the dataset
used in [2], and also with a dataset composed of filtered MNE
tracks, with different filters for each track. The original dataset in
[2] is a collection of 15 soundtrack mixes: 5 of them containing 3
languages, 5 containing 4 languages and 5 containing 5 languages
(Spanish, French, Italian, Japanese and German). Each set of mix-
tures was created by linearly mixing a short MNE fragment with

each of the dialog fragments. This corresponds to an instantaneous
mix in which the MNE tracks are identical and remain unfiltered.
The second dataset contains convolutive mixes. To generate them,
Butterworth low-pass (cutting respectively at 1000, 2000, and 3000
Hz) and high-pass filters of order 10 (cutting respectively at 500
and 800 Hz) were applied. It should be noted that such filters in-
troduce heavy modifications to the frequency contents of the signal,
and thus produced a demanding evaluation scenario. All sound files
were sampled at 48 kHz.

Evaluation is based on a well-known objective metric given the
separated sources, namely the Source to Distortion Ratio (SDR).
This metric gives an overall performance of the source separation
algorithm. For the sake of conciseness we will not present the re-
sults for the Source to Interferences Ratio (SIR), which measures
the leakage of the unwanted sources into the desired sources, and
the Source to Artifacts Ratio (SAR), which measures the distor-
tion not due to interferences. The SDR is implemented in the
BSS EVAL toolbox [7].

4.2. Experiments

Several methods have been tested for the performance compari-
son:

• The two best geometric separation algorithms presented in
[2]. The first one (called N-SP) is a multichannel extension
of the shortest-path (SP) algorithm. The second one (called
N-SP-SUB) is a variation thereof which performs a usual 2-
dimensional SP after a projection into a subspace. It is ex-
pected that these methods will give low results for convolutive
mixes: the filtering breaks the assumption that the common sig-
nal is theoretically on the bisector vector of the channel space
(see [2] for more details).

• The Wiener oracle algorithm, which gives a very optimistic
upper bound of what can be achieved if the Wiener masks were
optimally estimated.

• The algorithm presented in this paper without the filters gi

(CNMF, for Common NMF).
• The full algorithm presented in this paper (CCNMF, for Con-

volutive Common NMF).

For the STFT analysis involved in each of these algorithms, a Ham-
ming window of 80 ms with an overlap factor of 75% was used for
all the tested algorithms. A website with sound examples of sepa-
ration results is available1.

4.3. Results

The results are presented in Table 1. Results corresponding to
the instantaneous dataset are in the columns labeled “SDR inst”,
and results corresponding to the convolutive dataset in the columns
marked “SDR conv”. From the results, we can draw the following
conclusions:

• For the instantaneous mixes, the CNMF method performs
around 3-4 dB below the geometric methods N-SP and N-SP-
SUB, which are close to the oracle performance. The quality
of extraction of CNMF increases as the number of available
languages increases. CCNMF shows even lower results (3dB
to 5dB less): it seems that optimizing a filter adds degrees of

1http://research.audionamix.com/ccase waspaa2011
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3 versions 4 versions 5 versions
Method SDR inst (dB) SDR conv (dB) SDR inst (dB) SDR conv (dB) SDR inst (dB) SDR conv (dB)

Music and Effects (MNE)
N-SP 7.30 ± 2.49 -5.53 ± 4.16 8.17 ± 1.86 -14.11 ± 2.95 8.53± 1.62 -20.28 ±5.94

N-SP-SUB 5.28 ± 3.45 -5.15 ± 4.21 9.10 ± 3.13 -9.7 ± 4.84 10.78± 2.72 -16.03 ± 1.49
CNMF 5.19± 1.78 5.09 ± 3.8 5.64 ± 1.99 3.15 ± 3.11 6.04± 2.05 -0.35 ± 2.16

CCNMF 0.08 ± 3.61 2.56 ± 3.34 2.11 ± 3.23 3.17 ± 3.36 3.35 ± 2.29 3.23 ± 3.41
Oracle 11.44 ± 1.93 17.51 ± 0.56 11.44 ± 1.93 18.59 ± 2.20 11.67 ± 2.07 19.43 ± 2.67

Dialogs
N-SP 15.08 ± 8.50 8.50 ± 3.09 16.08 ± 2.29 8.59 ± 3.85 15.91 ± 2.42 9.38 ± 3.88

N-SP-SUB 10.70 ± 2.34 8.49 ± 2.74 15.70 ± 2.10 10.39 ± 3.23 17.19 ± 2.25 9.91 ± 3.74
CNMF 12.17 ± 0.61 12.39 ± 0.1 12.72 ± 0.74 12.12 ± 1.61 12.72 ± 0.83 11.76 ± 2.22

CCNMF 1.38 ± 3.99 7.34 ± 2.04 4.22 ± 4.03 8.71 ± 2.74 4.88 ± 2.94 10.28 ± 3.3
Oracle 16.97 ± 0.36 17.51 ± 0.56 17.27 ± 0.67 18.59 ± 2.20 17.10 ± 0.69 19.43 ± 2.67

Table 1: Results (mean± standard deviation) of Music and Effects and Dialog extraction using several common signal extraction techniques.
The N-SP and N-SP-SUB techniques have been presented in [2] and are geometric common signal extraction methods. The CNMF and
CCNMF are the methods presented in this paper: CNMF (resp. CCNMF) involves an NMF (resp. filtered NMF) modeling of the common
signal.

freedom that make the model converge towards the wrong val-
ues.

• For the convolutive mixes, the results of the geometric meth-
ods degrade considerably, especially for the MNE track extrac-
tion (20 to 40 dB below oracle). Moreover, the performance
decreases when the number of versions increases. Indeed, the
filters degrade the sparsity assumption taken for these methods.

• The CCNMF method provides MNE signal extraction results
that are acceptable for convolutive mixes, and that are slightly
increasing when the number of versions available increases.
The improvement over geometric methods for convolutive
MNE extraction is important: from 7 dB to 20 dB, increasing
with the number of versions. Surprisingly, the CNMF method
provides the best results, except for the convolutive database
case with 5 input versions.

• The dialog extraction task is less sensitive to the used method
(geometric or NMF-based); the best results are provided by the
CNMF method. The good results of the geometric methods
can be explained by the fact that the dialogs components in the
time-frequency domain stay close to the component axes [2]
when the convolution is applied to the common signal.

The experimental study shows that the proposed algorithm succeeds
in handling MNE extraction with convolutive mixes, in which case
the geometric methods fail as expected. The filter adaptation does
not always provides the best results, but the NMF-based methods
always show a significant improvement. There is still a quality gap
to fill to get exploitable results (more than 10 dB SDR are required
in most applicative contexts).

5. CONCLUSION

In this study, a novel algorithm for common audio signal extraction
has been introduced. Its specific feature is to handle the case in
which the common signal of interest (a music and effects track) is
mixed convolutively with the signal-specific sources (the dialogs).
It involves the modeling of the signal-specific sources with NMF
models, and the common signal as a possibly filtered NMF model.
Experimental results show that this method succeeds when convo-
lutive mixes are processed, while previously introduced geometric
methods fail. However there is still a quality gap to bridge to get re-

sults appropriate for applicative use, for example for remixing with
a new dialog track.

Further studies will add constraints to the filter in order to im-
prove its estimation. The compensation of the synchronization be-
tween the different MNE signals will also be addressed to allow pro-
cessing more realistic cases involving inter-channel drifting. Mod-
els for multi-channel versions will also be investigated.
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