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Abstract. We combine the use of a Bayesian NMF framework to add
temporal smoothness priors, with a supervised prior learning of the
smoothness parameters on a database of solo musical instruments. The
goal is to separate main instruments from realistic mono musical mix-
tures. The proposed learning step allows a better initialization of the
spectral dictionaries and of the smoothness parameters. This approach
is shown to outperform the separation results compared to the unsuper-
vised version.

1 Introduction

Non-negative matrix factorization (NMF) is a well-known signal decomposition
technique frequently used for sound source separation. NMF decomposes a spec-
trogram into a set of spectral bases, each one multiplied by a time-varying weight.
When dealing with musical mixtures, it is possible to exploit the specific prop-
erties of musical instruments, such as the typical temporal evolution of their
spectral bases.

One way of integrating such a priori information is by using statistical priors
in a Bayesian statistical framework. This was the approach used to force tem-
poral smoothness in [1], and both temporal smoothness and harmonicity in [2].
Another option is to use supervised methods and perform a prior learning based
on a database of isolated instrumental sounds. An example of this second ap-
proach is the work presented in [3], where NMF is combined with a pre-trained
Hidden Markov Model (HMM) to model dynamic behavior.

In this contribution, we use a combination of both Bayesian priors and
database learning to model temporal smoothness and improve separation quality.
The goal is to extract the lead instrument from realistic mono musical mixtures.
In particular, our system is based on a Bayesian NMF model with temporal
smoothness priors described by Inverse Gamma (IG) distributions (Sect. 2), as
was done in [1, 2]. Here, we extend such approach by introducing a learning
stage, which is based on performing NMF optimization on isolated instruments
with the IG parameters as additional optimization parameters (Sect. 3). We
evaluate the performance with 4 different instruments, and for all settings (with



or without priors, with or without learning), we compare the performance of
two possible implementations of NMF optimization, one based on Multiplicative
Updates (NMF-MU), and one based on Expectation-Maximization (NMF-EM).

2 Unsupervised Algorithms

2.1 NMF Framework

The input signal is first transformed into the time-frequency domain by means
of a Short Time Fourier Transform (STFT), yielding a matrix X. As in [1],
the squared modulus of each element is computed to obtain a matrix of power
spectral densities V = |X|◦2. The goal of NMF is to find the non-negative
matrices W and H such that

V ≈WH. (1)

W and H have dimensions F ×K and K ×N , respectively, and it is desirable
that F ×K +K ×N ≪ FN . The rows of H are usually called activations and
the columns of W atoms or bases.

Such factorization is formulated here as the minimization problem

{W,H} = argmin
W,H≥0

DIS(V|WH), (2)

where DIS is a matrix cost function involving the Itakura-Saito element-wise
divergence dIS :

DIS(V|WH) =
F
∑

f=1

N
∑

n=1

dIS(V(f,n)|[WH](f,n)). (3)

The IS divergence, defined as

dIS(x | y) =
x

y
− log

x

y
− 1, (4)

is a good measure for the perceptual difference between two spectra, which is
explained by its scale invariance: dIS(γx|γy) = dIS(x|y), for a given scalar γ.

It can be shown [1] that the above optimization (Eq. 2) is equivalent to
a Maximum Likelihood (ML) estimation if the columns of the STFT matrix
X, denoted by xn, are supposed to be generated by a K-component Gaussian
Mixture Model (GMM):

xn =
K
∑

k=1

ckn ∈ C
F , ∀n = 1, ..., N, (5)

where latent variables ckn are independent and follow a zero-mean multivariate
normal distribution ckn ∼ N (0, hkndiag (wk)), where hkn are the elements of the
activation matrix H and wk are the columns of the dictionary matrix W. The



separation process consists in optimizing the criterion CML(θ)
△
= log p(V | θ),

where θ = {W,H} is the parameter vector.
We implement and test two NMF algorithms, one based on Multiplicative

Update rules (NMF-MU), and one based on an EM algorithm (NMF-EM). They
mainly differ in their speed of convergence to a global solution and in computa-
tional performance. The first one was used in [1], and the second one in [2], and
both can be adapted to a Bayesian setting.

2.2 NMF-MU algorithm

Multiplicative Update (MU) rules to iteratively find the optimal W and H are
given for the IS divergence [4] by

H← H ◦
WT

(

(WH)
◦[−2] ◦V

)

WT (WH)
◦[−1]

, (6)

W←W ◦

(

(WH)
◦[−2] ◦V

)

◦HT

(WH)
◦[−1]

HT
, (7)

where the ◦ symbol denotes element-wise operations, and the division is also
element-wise.

2.3 NMF-EM Algorithm

An alternative to MU is to directly perform an ML estimation of the generative
model of Eq. 5 via an EM algorithm. In particular, the Space Alternating Gener-
alized EM (SAGE) algorithm [1] is a type of EM algorithm that allows to update
large parameter matrices in separate chunks, with fast convergence properties. In
particular, we aim at estimating separately the parameters Ck = (ck1, ..., ckN ).

If we partition the parameter space by θ =
⋃K

k=1 θk where θk = {wk,hk}, SAGE
consists in choosing for each subset θk a hidden-data space which is complete
for this particular subset, i.e. θk = Ck. The resulting algorithm to estimate W
and H is defined in detail in [1].

2.4 Bayesian NMF with temporal smoothness prior

The Bayes rule allows to switch from a ML estimation to a Maximum A Pos-
teriori (MAP) estimation. We can thus introduce the prior distributions p(W)
and p(H) in this manner:

p (W,H | V) =
p (V |W,H) p(W)p(H)

p(V)
. (8)

In the case of temporal modeling, p(H) is the relevant prior. MAP estimation is
obtained by maximizing the following criterion:

CMAP (θ)
△
= log p(θ | V)

c
= CML(θ) + log p(H), (9)



where the binary operator
c
= denotes equality up to an additive constant.

Based on the MAP estimator, [1] and [2] propose a Markov chain prior struc-
ture to model p(H):

p(hk) = p(hk1)

N
∏

n=2

p(hkn | hk,n−1). (10)

The main objective is to assure smoothness over the rows of H. With an appro-
priate choice of the Markov transition matrix, we can favor a slow variation of
hk. For example, we can force p (hkn | hk,n−1) reach its maximum at p(hk,n−1).
The authors propose:

p (hkn | hk,n−1) = IG (hkn | αk, (αk + 1)hk,n−1) , (11)

where IG(x | α, β) is the inverse-Gamma distribution1 with mode β
α+1 and the

initial distribution p(hk1) is Jeffrey’s non-informative prior: p(hk1) ∝
1

hk1
. Hence,

αk is a parameter that controls the degree of smoothness for the k-th component.

Note that we can have different smoothness parameters for each component.
Thus, the smoothness parameter is actually a vector α = (α1, α2, . . . , αK). In
practice, we want to set a smoothness prior only to those components that are
supposed to describe the lead instrument. If we assign the first Ks components
to the lead instrument, and the remaining ones to the accompaniment, then the
αk priors apply only to 1 ≤ k ≤ Ks, and no priors are used for Ks < k ≤ K.

The priors can be added to both NMF-MU [2] and NMF-EM [1] algorithms,
as follows:

– NMF-MU/IG algorithm. Eq. (9) gives the following new update rules
for H, that replace Eq. 6:

hk1 ← hk1 ×





∑F
f=1

vf1wfk

v̂2
f1

+ αk+1
hk1

∑F
f=1

wfk

v̂f1
+ αk+1

hk2





η

(12)

hkn ← hkn ×





∑F
f=1

vfnwfk

v̂2
fn

+ (αk+1)hn−1

h2
kn

∑F
f=1

wfk

v̂fn
+ 1

hkn
+ αk+1

hk,n+1





η

(13)

hkN ← hkN ×





∑F
f=1

vfNwfk

v̂2
fN

+ (αk+1)hN−1

h2
kN

∑F
f=1

wfk

v̂fN
+ αk+1

hkN





η

, (14)

where η ∈]0, 1] plays the role of the step size in gradient descent.

1 IG (x | α, β) = βα

Γ (α)
x−(α+1) exp

(

−β

x

)



p2 p1 p0

hk1
αk+1
hk2

F − αk + 1 −F ĥk1

hkn
αk+1
hkn+1

F + 1 −F ĥkn − (αk + 1)hk,n−1

hkN 0 F + αk + 1 −F ĥkN − (αk + 1)hk,N−1

Table 1. Coefficients for the post estimation of hkn in NMF-EM/IG.

– NMF-EM/IG algorithm. To integrate the temporal smoothness prior into
NMF-EM, the best way is to add a post estimation after each update, com-
puted as follows:

hkn =

√

p21 − 4p2p0 − p1
2p2

, (15)

where the coefficients p0, p1 and p2 depend on n and are given in Table 1.
In a more recent work [5], a simpler procedure, leading to a better-posed
optimization problem and based on Majorization-Minimization (MM), has
been proposed as an alternative to a Bayesian EM approach as described
above. In the present paper, we use EM as proposed in [1], and will explore
the MM alternative in the future.

3 Supervised Algorithms

The smoothness priors αk defined in the previous section need to be set by hand
prior to separation, and remain fixed throughout the optimization process. Fur-
thermore, it would be too cumbersome to find good manual parameters for the
individual priors of components with indices 1 ≤ k ≤ Ks. Thus, an improve-
ment of separation quality is expected if the αks are automatically learned from
a training database of isolated instrumental excerpts.

We implement learning by considering the smoothness vector α as an addi-
tional parameter to optimize, obtaining the new parameter vector

θ = {W,H,α}. (16)

A MAP estimation (Eq. 9) is performed on an audio file containing concatenated

solo excerpts. We keep the estimated dictionary matrix Ŵ and the smoothness
vector α̂ obtained in this way, and use them to initialize the MAP estimation
performed on the mixture for actual separation.



The new update rule for the αk coefficients is derived via ML estimation
given the IG Markov chain from Eqs. 10 and 11. The log-likelihood is given by

log (p(hk))
c
= log

(

1

hk1

)

+
N
∑

n=2

[αk log((αk + 1)hk,n−1)− log(Γ (αk)) (17)

−(αk + 1) log(hkn)−
αkhk,n−1

hkn
−
hk,n−1

hkn

]

c
= αk(log(hk1)− log(hkN ))− log(hk1) +

N
∑

n=2

[αk log(αk + 1) (18)

− log(Γ (αk))− log(hkn)−
αkhk,n−1

hkn
−
hk,n−1

hkn

]

.

Minimizing the ML criterion gives:

∂ log(p(hk))

∂αk

= 0

⇔ log

(

hk1

hkN

)

+
N
∑

n=2

[

log(αk + 1) +
αk

αk + 1
− ψ(αk)−

hk,n−1

hkn

]

= 0

⇔ log(αk + 1) +
αk

αk + 1
− ψ(αk) =

1

N − 1

(

log

(

hkN

hk1

)

+

N
∑

n=2

hk,n−1

hkn

)

,

(19)

where ψ is the digamma function defined as: ψ(x) = Γ ′(x)
Γ (x) . Since Eq. 19 has no

closed-form solution, the estimation of the current αk is computed numerically.
For separation, we assign again the first Ks components to the main instru-

ment. Thus, learned vector α̂ applies only to the first Ks components of the
matrix H is separation, and the first Ks columns of W are equal to the learned
dictionary Ŵ.

4 Evaluation

For learning, 4 instruments from the RWC musical instrument sound database
[6] were used. The instruments chosen were saxophone, trumpet, classical gui-
tar and piano. The saxophone and the trumpet are melodic instruments which
usually play only one note at a time. The piano and the guitar are polyphonic in-
struments that can play several notes at a time (although the guitar will mostly
play individual notes when doing a solo). Furthermore, saxophone and trumpet
are sustained instruments (the notes can be held as long as the breathing of
the player allows), whereas piano and guitar are non-sustained instruments with
note energy always decaying after the onset. Thus, the smoothness parameters
over the rows of H are expected to be quite different between both kinds of
instruments.



500 iterations Unsupervised Supervised

Without priors IG Without priors IG

Saxophone NMF-MU 10.19 9.12 10.47 9.66

NMF-EM 7.14 6.76 7.01 7.58

Trumpet NMF-MU 6.16 4.80 6.39 7.88

NMF-EM 3.63 3.98 4.55 5.06

Classic Guitar NMF-MU 9.84 8.75 8.88 10.07

NMF-EM 7.38 7.52 8.01 6.52

Piano NMF-MU 6.99 4.73 5.44 6.95

NMF-EM 3.11 3.98 2.97 2.08

Global NMF-MU 8.30 6.85 7.80 8.64

NMF-EM 5.32 5.56 5.64 5.31

Table 2. Average SDR (in dB)

To evaluate separation, 18 mixes were created from songs available in multi-
track and featuring solos by those instruments2. For each song, one mono track
was created for the solo, and one mono track containing all the remaining in-
struments (accompaniment).

For objective evaluation in terms of Source to Distortion Ratio (SDR), we
use the BSS EVAL toolbox [7]. After separation into K NMF components, it
is still necessary to assign the components to one of the sources. For evaluation
purposes, SDR is measured between each component and the original tracks.
The higher SDR determines if the component represents the solo or the accom-
paniment.

We evaluate both NMF-MU and NMF-EM algorithms, with or without pri-
ors, and in both unsupervised and supervised versions. In the unsupervised ver-
sion, the parameters are initialized randomly except for the smoothness parame-
ters, which are fixed empirically. In that case, we set the same smoothness value
for all αk. In the supervised case, the learned parameters are then used in the
separation process to initialize the system, as explained in Sect 3. Note that in
the supervised version without smoothness priors, the dictionary W is learned
anyway.

Results are given in Table 2. The following conclusions can be drawn:

– NMF-MU algorithms perform in general better than NMF-EM algorithms.
– In unsupervised algorithms, using the IG smoothness priors is not efficient.

This is probably due to the difficulty of manually finding good values for α̂.
– Supervised algorithms outperform unsupervised algorithms, except in the

case of the piano, in which case the maximum performance is virtually the
same. This might indicate that the IG distribution is not well suited to
describe the dynamics of the piano spectra.

– In supervised algorithms, using the smoothness priors improves performance,
except for the saxophone.

2 Source: ccmixter.org



A selection of sound examples can be found online3.

5 Conclusions and perspectives

We have proposed a learning stage for the IG temporal smoothness priors within
an NMF Bayesian framework for separation of main instruments in mono mix-
tures. An evaluation of the different system configurations was performed, in-
cluding supervised and unsupervised versions, with or without priors, and both
in MU and EM implementations, for sustained (trumpet and saxophone) and
non-sustained (piano and guitar) instruments. Supervised approaches are shown
to perform better than unsupervised ones, except in the case of the piano. Glob-
ally, the MU versions of the algorithms perform better.

A refinement of the temporal priors will be subject to further study. In par-
ticular, a temporal description will probably benefit from a structured repre-
sentation considering the attack and sustain parts separately. Also, other prior
distributions will be investigated to improve difficult cases, such as the piano.
Finally, other instrument-specific priors, such as spectral smoothness or har-
monicity, might also be taken into account in order to further improve separation
quality.
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