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ABSTRACT

We introduce a novel application of genetic motif discovery in sym-
bolic sequence representations of sound for audio event detection.
Sounds are represented as a set of parallel symbolic sequences, each
symbol representing a spectral shape, and each layer indicating the
contribution weights of each spectral shape to the sound. Such lay-
ered symbolic representations are input to a genetic motif discovery
algorithm that detects and clusters recurrent and structurally salient
sound events in an unsupervised and queryless manner. The found
motifs can be interpreted as statistical temporal models of spectral
evolution. The system is successfully evaluated in two tasks: envi-
ronmental sound event detection, and drum onset detection.

Index Terms— Audio event detection, motif discovery, sym-
bolic representations.

1. INTRODUCTION

The goal of this work is to take advantage of genetic motif discovery
algorithms’ speed, accuracy and flexibility to perform audio event
detection. Motif discovery is a common task in bioinformatics; it
reveals the biological significance of a portion of genetic code [1]. It
is performed on very large data, usually DNA sequences of several
millions of symbols. Existing methods are therefore designed to be
extremely fast. Furthermore, motif repetitions are seldom exact in
genetics, and thus retrieved matches need to be detected based on a
carefully designed measure of similarity; the same can be said about
realistic sound events.

Motif discovery is related to sequence alignment, with an impor-
tant difference: sequence alignment takes a query sequence and finds
the positions of best alignments in a database, while motif discovery
finds relevant events from scratch and creates a statistical model of
the event (the motif). Thus, motif discovery is data-driven (represen-
tations are directly learned from the sound on which event detection
is performed), unsupervised (there is no a priori learning) and query-
less (the algorithm decides by itself which are the interesting similar-
ity regions). While genetic sequence alignment has often been used
in audio applications before (see e.g. [2]), to our knowledge the use
of genetic motif finding in audio is new.

In our case, each sequence letter corresponds to a characteristic
spectral shape, and thus a sequence motif can be interpreted as a
statistical temporal model of the spectrum. In a parallel work [3],
we have proposed a baseline system that generates a single symbolic
sequence for each sound and subjects it to motif discovery. Here,
we extend that idea and propose a system that translates each file
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Fig. 1. Overview of the audio event detection system.

into a set of parallel symbolic sequences, which we call a layered
sequence representation. Instead of representing each spectral frame
by a single symbol at a time, each frame can now be described by a
combination of symbols, obtaining different levels of representation.
This is useful for describing complex sounds.

Since traditional genetic motif discovery is constrained to
single-level sequences, several important adaptations to our ap-
plication scenario are needed. In particular, this paper focuses on
two main issues: first, the study and comparison of two methods for
learning layered symbolic representations, based on Non-negative
Matrix Factorization (NMF) and Principal Component Analysis
(PCA); and second, the influence of correlations between layered
sequences, by taking cross-layer structure into account. As motif
discovery algorithm, we have chosen the well-established Multi-
ple Expectation-Maximization for Motif Elicitation (MEME) [4].
We evaluate the system with an artificial mixture of environmen-
tal sounds with two sound event classes (dog barks and hammer
strikes), and with a collection of music excerpts where the goal is to
detect the onsets of the bass drum and the snare drum.

2. SYSTEM OVERVIEW

Our framework for audio event detection in a sound excerpt relies
on four steps, as illustrated in Fig. 1. First, audio features are cal-
culated for every overlapping time window of the excerpt. We use
10 ms-long windows and 50% overlapping, and computed 12 Mel-
Frequency Cepstral Coefficients (MFCC), the first coefficient (en-
ergy) being discarded. We obtain a set of feature vectors ordered in
time.

Second, the learning algorithms compute a set of prototype
feature vectors that we call a dictionary, and give a representation
of the feature vectors as combinations of the dictionary elements,
called atoms. Here, we will discuss the advantages and drawbacks of



two dictionary learning methods: one based on NMF, which views
data feature vectors as sums of nonnegative dictionary elements, and
PCA, which relies on variance maximization.

Third, a symbol (usually a letter from the alphabet) is assigned
to every dictionary element. Hence symbolic time sequences are
generated to represent the sound excerpt as a series of symbols. We
will also discuss the issue of how these sequences can be built to help
audio event detection. Finally, the MEME algorithm is run on the
symbolic sequence, and the resulting sequence motifs are mapped to
the corresponding audio events.

2.1. Dictionary learning algorithms

As previously stated, we tested two well-known methods for learn-
ing the dictionary: NMF and PCA. NMF formulates the matrix fac-
torization problem under non-negativity constraints, and is imple-
mented as an iterative optimization with a given objective function.
Given a nonnegative data matrix X, we look for a nonnegative dic-
tionary matrix W and activations matrix H so that X ≈WH, with W
and H smaller than X. In our case, X’s columns are the data feature
vectors, W’s columns are the atoms and H contains the activation
coefficients, i.e., the weights with which the atoms need to be com-
bined to reconstruct the original signal. We will denote the number
of atoms by K. We iteratively minimize the difference between X
and WH according to the Itakura-Saito divergence.

PCA can also be formulated as a matrix factorization, but the
constraints are different. PCA searches a new coordinate system
concentrating the information in the subspace spanned by its first
vectors. Thus, in the PCA case, W’s columns (atoms) are the
maximum-variance directions in the new space, which are equal to
the K eigenvectors of the covariance matrix of the data which cor-
respond to the K larger eigenvalues. H contains again the activation
coefficients, but now elements in both W and H are allowed to be
negative.

Once the dictionary W of K atoms is constructed either way,
each atom is assigned to a letter from an alphabet of size K. The
choice and assignment of letters is arbitrary. The feature vector se-
quence is thus converted to a sequence of letters, according to the
atoms having the highest weights at each frame. Note that the use of
NMF or PCA on non-additive features such a MFCC poses several
theoretical questions, which will be discussed in Sect. 3.1.

2.2. Motif discovery with MEME

MEME [4] is an algorithm commonly used for motif search in ge-
netic sequences. It relies on a two-component mixture model: a
portion of sequence can either be a motif occurrence or part of the
background, according to a binomial distribution. If a portion of
sequence is a motif, each one of its symbols is generated by a multi-
nomial distribution (containing the probability of appearance of each
symbol) specific to that particular position in the motif. If it belongs
to the background, its symbols are generated by the same multino-
mial distribution, independently of the position. The distribution for
a given substring xi can thus be expressed as

p(xi|θ) = λpM (xi|θM , w) + (1− λ)pB(xi|θB), (1)

where θM is the parameter vector of the set of multinomials describ-
ing the motif, θB is the parameter vector of the single multinomial
describing the background, λ is the probability that the substring was
generated by the motif model, and θ is the global parameter vector,
defined as θ = {λ,θM ,θB}. The index w indicates that θM de-
pends on the position of the symbols in the motif.

The parameters are subjected to Maximum Likelihood estima-
tion via an Expectation-Maximization algorithm. In addition, a se-
ries of heuristics are performed to find good candidates for the start-
ing positions of the motif occurrences. Details about the actual com-
putation are to be found in [4]. The algorithm outputs, for each found
motif, a Position-Specific Probability Matrix (PSPM), containing the
probability of each letter at each position in the motif, and a list of
the starting and end points of each instance of the motif in the se-
quence database. Such motif instances are called sites.

3. LAYERED SYMBOLIC SEQUENCES

3.1. Interpretation of dictionary elements

NMF and PCA are both matrix factorization techniques, in that they
express the data items as linear combinations of dictionary elements.
The coefficients are usually called activations for NMF and scores
for PCA; we call them both weights, and regard them as a measure
of importance of dictionary elements in the mixture. The larger the
weight is, the more important the corresponding component is. How-
ever, the application of NMF and PCA to an MFCC feature space
raises several questions, which are worth discussing here.

In the case of NMF, the data is viewed as a sum of dictionary el-
ements, with a nonnegativity constraint. But note that audio features
are not always nonnegative, and that the chosen audio features need
to be additive for this decomposition to be intuitive or physically in-
terpretable. This suggests the use of features such as the magnitude
spectrum, or filter banks. Here, in contrast, we are using NMF on
a non-additive representation (MFCC). This means that, even if the
observed feature vectors can be indeed reconstructed by summing
the dictionary elements, the individual atoms will not necessarily
correspond to the individual sound entities in the spectrogram do-
main. Furthermore, MFCCs contain negative values, and thus they
need to be positivized before the NMF computation.

On the other hand, using PCA on MFCCs can seem redundant,
since the last stage of the MFCC extraction process involves com-
puting a Discrete Cosine Transform (DCT), which already has good
(while non-optimal) data compression properties.

Finally, in the case of PCA, weights may be negative. In terms of
spectral contents, negative weights do not bring a principal compo-
nent into the mix, but its inverse. Here, we choose the usual order of
numbers to sort components by importance according to their PCA
score. In future work, it might be interesting to consider negative
scores as dual cases, and define additional atoms as the inverses of
existing ones.

Due to these theoretical considerations, we performed a set of
preliminary experiments to study the effect of applying NMF and
PCA to power spectrograms and Mel filter banks (i.e., MFCCs with-
out the logarithm and DCT stages) instead of MFCCs. For NMF,
the MFCCs were positivized simply by adding the minimum value
in the feature matrix. Surprisingly, both methods worked better with
MFCCs than with spectrograms or filter banks. Hence, both factor-
izations seem to work well as dimensionality reduction stages in this
particular application scenario. However, to draw more solid conclu-
sions on the implications of this way of factorizing MFCCs, further
experiments and evaluation tasks would be needed.

3.2. Independent layered sequences

Let us now define an N -sequence representation, where N must be
smaller than the data representation space dimension K. Sequence
no. 1 is the series of symbols corresponding to the most relevant
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Fig. 2. Layered sequence and metasymbol representations.

dictionary component in each one of the consecutive overlapping
analysis windows. Relevance is measured by the NMF or PCA de-
composition weights, as defined before. Similarly, sequence no. n is
the series of symbols corresponding to the nth most relevant dictio-
nary component in each one of the consecutive overlapping analysis
windows. This is what we call a layered sequence representation. To
achieve better performance, before building the sequences, we dis-
card components whose weights are too low by thresholding. Thus,
there may be less than N relevant components per sequence posi-
tion; we authorize blank symbols.

The particular case N = 1 corresponds to generating a single-
level sequence, as in [3]. In that case, the generated sequences can
be treated by MEME without further processing. For 1 < N ≤
K, we have a layered sequence, and MEME has to be accordingly
adapted. In particular, we would need to add an extra dimensionality
N to model parameters θM and θB to account for the extra layers.
However, if we assume the N layered symbols to be independent,
it can be shown that such a layered MEME approach is equivalent
to inputting layered symbols sequentially into standard MEME. This
requires however to perform motif search in a representation that is
N times longer.

3.3. Metasymbols and structured layered sequences

The previous approach is based on the assumption that layered se-
quences are statistically independent. If we want to model a certain
degree of structure among sequences, and still be able to perform
the motif search with MEME, we need a higher level representation
taking into account cross-layer dependencies.

Given the alphabet ofK symbols defined by dictionary learning,
and assuming that we have N layered sequences (N ≤ K), we de-
fine a new alphabet of metasymbols, which are all the combinations
ofK or less symbols, without repetition, but with permutations. The
size of such meta-alphabet is given by the sum:

Kmeta =

K∑
k=1

(K)k, (2)

where (K)k is the Pochhammer symbol denoting a falling factorial:

(K)k = K(K − 1)(K − 2) . . . (K − k + 1). (3)

Note that this number grows extremely fast. For K = 3, we have
Kmeta = 15 metasymbols, but K = 5 gives already Kmeta = 325
metasymbols. Yet this simple approach effectively models structure
between sequences at all given positions for a moderate number of
metasymbols, as experiments will show, and does not require the

symbolic sequence to be extended as in the previous case. The for-
mation of a metasymbolic sequence from a layered sequence is il-
lustrated in Fig. 2.

To sum up, we have implemented and tested these three se-
quence generation methods:

• Single-layer sequences. At each frame, the atom with the
highest weight is chosen from an alphabet of K atoms. For
single-layer sequences, we will use the notation K/1.

• Independent layered sequences. The N > 1 most impor-
tant atoms are chosen from an alphabet ofK atoms. This will
be denoted by the notation K/N .

• Meta-sequences. From an alphabet of K atoms and K = N
sequences, a sequence of Kmeta metasymbols is generated.
This will be denoted by the notation K/1/m(Kmeta).

4. APPLICATION TO EVENT DETECTION

In the symbolic representation of an audio excerpt, we expect recur-
rent motifs to correspond to structurally relevant audio events. Such
events can be of any type, and we characterize them by a certain
temporal evolution of the audio features we extract from them. An
audio event is spotted by looking for a particular, recurrent series of
audio feature characteristics. Depending on the chosen feature set,
it might denote different things, from sound volume to spectral or
cepstral profiles (our case).

To evaluate the system, we use a collection of sound mixes
where the onsets of repetitive short audio events have been manually
annotated. MEME outputs, for each found motif, the list of found
sites in terms of sequence indices, which are translated to time and
matched with the annotated ground truth. Note that, by grouping
the sites with the motifs, MEME is concurrently performing onset
detection and unsupervised classification (clustering) of the audio
events, two tasks that are traditionally separated in audio analysis or
Music Information Retrieval (MIR) tasks.

The performance is measured in terms of class-wise Precision
(P ), Recall (R) and F-Measure F = (2PR/(P + R)) with respect
to the annotated onsets within an error window of 40 ms. F is con-
sidered the overall quality indicator. The system was tested in two
application scenarios: detection of events in an environmental sound
scene, and bass drum and snare drum detection in music mixtures.

4.1. Results for environmental sound event detection

For the first test, an artificial environmental sound scene was cre-
ated by mixing a background sound of a park ambiance with repet-
itive (but non-identical) dog barks and hammer strikes. NMF and
PCA were compared as dictionary learning methods, with different
configurations for sequence generation. In particular, we chose the
3/1 and 12/1 configurations for single-layer sequences, the 3/3 and
12/3 configurations for the independent layered sequences and the
3/1/m(15) configuration for the metasequence. We choseK = 12 in
two of the configurations because it is the highest possible alphabet
size due to the maximum feature dimensionality of 12 MFCCs. The
choice of K = 3 in the three other configurations was to compare
the gain of using metasequences, while keeping a reasonable number
of metasymbols (Kmeta = 15).

The results are shown in Fig. 3, where we have measured F
for different levels of the background ambiance sound (measured as
the peak-to-peak amplitude ratio in dB). The rightmost point in the
graph corresponds to an infinite level ratio (no background sound).
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Fig. 3. Results (F-Measure) for environmental sound detection.

For most background levels, the highest performing configuration is
PCA 3/1/m(15), reaching F = 84.59% for a level of 25 dB and
of 98.28% with no background noise. It can be seen that overall,
PCA performs better than NMF, and that the gain of using metase-
quences over independent layered sequences, and even more over
single-layer sequences, is considerable. More detailed results for the
case of 25 dB background level ratio are shown on the left part of
Table 1. With PCA, using metasymbols with the same original dic-
tionary size of K = 3 improves F by 58.93%, while increasing the
dictionary size from K = 3 to K = 12 only results in a moder-
ate improvement of 5.59%. The results with NMF are more similar
among configurations.

4.2. Results for drum sound detection

The same configurations have been tested in a drum detection task.
A set of 5 monaural mixes, of 10 seconds each, was created by mix-
ing real music excerpts where the drum tracks were available sepa-
rately. As before, the drum tracks were mixed at different levels with
the accompaniment (all the remaining instruments and vocals). The
onsets of the bass drum and of the snare drum were annotated, and
MEME is expected to find the onsets and cluster both kind of events.
Thus, this could be used to infer rhythmical patterns (since they are
mostly determined by the pattern of bass and snare drums). Results
(averaged among all mixes) are shown in Fig. 4 for all background
levels and on the right side of Table 1 for 25 dB background level.
For clarity, only the PCA results (which were consistently better)
are shown in the figure. Again, PCA 3/1/m(15) is clearly the best
configuration, reaching F = 41.59% at 25 dB and F = 43.58%
at 40 dB. The overall performance is lower than in the environmen-
tal detection task. This is due to the fact that the mixes are more
demanding: on the one hand, the background is considerably more
complex, on the other, the bass and snare events in the drum tracks
are often mixed with other percussive sounds such as hi-hats.

In all cases, the whole system is computationally efficient and
performs all the processing stages (feature extraction, dictionary
learning, sequence generation, motif discovery and index mapping)
faster than real time. The ratios are of around 0.6 real time for the
PCA 3/1 configuration and of around 0.7 real time for the PCA
3/1/m(15) configuration on a 3 GHz CPU with 8 GB RAM.

5. CONCLUSIONS AND OUTLOOK

We have proposed a new method for the unsupervised detection of
recurrent sound events in a mixture, based on symbolic sequence
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Fig. 4. Results (F-Measure) for drum sound detection.

Environmental Drums
Configuration P R F P R F
NMF 3/1 30.43 46.67 36.84 13.63 20.24 14.76
NMF 3/3 16.65 56.25 25.56 12.47 33.09 13.69
NMF 12/1 22.92 9.58 11.81 16.47 16.87 13.23
NMF 12/3 41.67 45.83 43.33 12.42 38.29 17.78
NMF 3/1/m(15) 44.12 50.00 46.87 20.53 28.72 20.87
PCA 3/1 38.10 22.08 25.56 9.27 8.21 8.00
PCA 3/3 53.12 35.42 30.36 11.46 57.06 18.52
PCA 12/1 31.25 31.25 31.25 21.35 22.03 16.35
PCA 12/3 50.00 10.00 16.67 30.57 53.79 31.78
PCA 3/1/m(15) 89.58 80.42 84.49 44.58 44.37 41.59

Table 1. Full results at 25 dB background level difference.

representations and on a genetic motif discovery algorithm called
MEME. Several dictionary learning and sequence representation
methods have been evaluated, with the combination of PCA with
metasequences as the best performing setup for all experimental
cases. Conveying the inter-layer structural information via meta-
symbols significantly improves performance over using a single-
layer sequence. The system has been tested in an environmental
sound detection task and in drum onset detection.

Future work will focus on improving the robustness of the
method against high noise levels, studying the stability of the al-
gorithms (they are very sensitive to parametrization), and studying
more closely the appropriateness of the feature space with respect
to the used dictionary learning method. The fact that the perfor-
mance curves are fairly oscillating suggests using larger evaluation
databases in the future, to observe smoother trends.
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