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Presentation overview

• Motivations, goals

• Timbre modeling of musical instruments
Representation stage

Prototyping stage

Application to instrument classification

• Monaural separation
Track grouping

Timbre matching

Application to polyphonic instrument recognition

Track retrieval

Evaluation and examples of mono separation

• Stereo separation
Blind Source Separation (BSS) stage

Extraneous track detection

Evaluation and examples of stereo separation

• Conclusions and outlook
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Motivation

• Source Separation for Music Information Retrieval

Goal: Facilitate feature extraction of complex signals

• The paradigms of Musical Source Separation (based on [Scheirer00])

Understanding without separation
Multipitch estimation, music genre classification

“Glass ceiling” of traditional methods (MFCC, GMM) [Aucouturier&Pachet04]

Separation for understanding

First (partially) separate, then feature extraction
Source separation as a way to break the glass ceiling!

Separation without understanding 
BSS: Blind Source Separation (ICA, ISA, NMF)

Understanding for separation
Supervised source separation

3

[Scheirer00]
[Aucouturier&Pachet04]

E. D. Scheirer. Music-Listening Systems. PhD thesis, Massachusetts Institute of Technology, 2000.
J.-J. Aucouturier and F. Pachet. Improving Timbre Similarity: How High is the Sky? Journal of Negative Results in Speech 
and Audio Sciences, 1 (1), 2004.
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Musical Source Separation Tasks

• Classification according to the nature of the mixtures:

• Classification according to available a priori information:
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Table 2.1: Classification of Audio Source Separation tasks according to the nature of the mixtures.

Source position Source model Number of sources Type of sources Onset times Pitch knowledge
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Table 2.2: Classification of Audio Source Separation tasks according to available a priori information.
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Modeling of Timbre

• Based on the Spectral Envelope and its dynamic evolution

• Requirements on the model
Generality

Ability to handle unknown, realistic signals.
Implemented by statistical learning from sample database.

Compactness
Together with generality, implies that the model has captured the essential 
source characteristics.
Implemented with spectral basis decomposition via Principal Component 
Analysis (PCA).

Accuracy
The model must guide the grouping and unmixing of the partials.
Demanding requirement that is not always necessary in other MIR 
application.
Realized by estimating the spectral envelope by Sinusoidal Modeling + 
Spectral Interpolation.

• Details on design and evaluation: [Burred 06]
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[Burred06] J.J. Burred, A. Röbel and X. Rodet. An Accurate Timbre Model for Musical Instruments and its Application to 
Classification. In Proc. Workshop on Learning the Semantics of Audio Signals (LSAS), Athens, Greece, December 2006.
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The      are the D largest eigenvalues of the covariance
matrix        , whose corresponding eigenvectors are
the columns of       .  

Representation stage (1)

• Basis decomposition of partial spectra

• Application of PCA to spectral envelopes

Example: decomposition of a single violin note, with vibrato
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Data matrix (partial 
amplitudes)

Transformation basis Projected coefficients

Projected coefficients



Juan José Burred.                                          Musical Source Separation.

Representation stage (2)
• Arrangement of the data matrix

Partial Indexing

Envelope Interpolation (preserves formants)

Envelope Interpolation performs better according to all criteria
          (compactness, accuracy, generality) and in classification tasks.
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Frequency support Original partial data PCA data matrix

Frequency support Original partial data PCA data matrix
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Prototyping stage (1)
• For each instrument, each coefficient trajectory is 

interpolated to the same relative time positions.

• Each cloud of “synchronous” coefficients is 
modeled as a D-dimensional Gaussian distribution.

• This originates a prototype curve      that can be 
modeled as a D-dimensional, non-stationary 
Gaussian Process with time-varying means and 
covariances.

• Projected back to time-frequency, the equivalent is 
a prototype envelope     : a unidimensional GP with 
time- and frequency-variant mean and variance 
surfaces.
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Piano training 
trajectories

Piano prototype 
curve
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envelope
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Prototyping stage (2)
• Practical example

5 instruments: piano, clarinet, 
trumpet, oboe, violin
423 sound samples, 2 octaves
All dynamic levels (forte, 
mezzoforte, piano)
RWC database

Common PCA bases
Only mean curves represented

• Automatically generated timbre 
space
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Prototyping stage (3)

10

Prototype envelope Frequency profile

• Practical example (cont’d)

Projection back into time-
frequency domain.
The prototype envelopes will 
serve as templates for the 
grouping and separation of 
partials.

• Examples of observed formants:

Clarinet:                                
first formant, between 1500 Hz 
and 1700 Hz. [Backus77]

Trumpet:                                
first formant, between 1200 Hz 
and 1400 Hz. [Backus77]

Violin:                                  
“bridge hill” around 2000 Hz. 
[Fletcher98]

[Backus77]

[Fletcher98]

J. Backus. The Acoustical Foundations of Music. W. W. 
Norton, 1977.
N. H. Fletcher and T. D. Rossing. The Physics of 
Musical Instruments. Springer, 1998.

Prototype envelope Frequency profile

Prototype envelope Frequency profile

CLARINET

TRUMPET

VIOLIN
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Application to instrument classification

• Classification of isolated-note 
samples from musical instruments

By projecting each input sample as an 
unknown coefficient trajectory in PCA 
space and

Measuring a global distance between 
the interpolated, unknown trajectory      
and all prototype curves     , defined as 
the average Euclidean distance between 
their mean points:

Experiment: 5 classes, 1098 files, 10-fold 
cross-validation, 2 octaves (C4 to B5)

Comparison of Partial Indexing (PI) and 
Envelope Interpolation (EI):              
20% improvement with EI

Comparison with MFCCs: 34% better 
with proposed representation method 
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Averaged classification accuracy 
(10-fold cross-validated)

Maximum averaged classification accuracy and 
standard deviation (STD) (10-fold cross-validated)
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Monaural separation: overview
• One channel: the maximally 

underdetermined situation

Underlying idea: to use the obtained prototype 
envelopes as time-frequency templates to 
guide the sinusoidal peak selection and 
grouping for separation.

• Separation is only based on common-fate 
and good continuation cues of the 
amplitudes

No harmonicity or quasi-harmonicity required
No a priori pitch information needed
No multipitch estimation stage needed
It is possible to separate inharmonic sounds
It is possible to separate same-instrument 
chords as single entities
Outputs instrument classification and 
segmentation data
No need for note-to-source clustering

• Trade-off for the above
Onset separability constraint

Sinusoidal Modeling

Onset detection

Track grouping

Timbre matching

Timbre 

model

library

 Track retrieval

Resynthesis

MIXTURE

...

Segmentation 

results

...

...

SOURCES
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[Burred&Sikora07] J.J. Burred and T. Sikora. Monaural Source Separation from 
Musical Mixtures based on Time-Frequency Timbre Models. 
In Proc. ISMIR, Vienna,  Austria, September 2007.
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Track grouping

• Inharmonic sinusoidal analysis on the mixture

• Simple onset detection 
Based on the number of new sinusoidal tracks at any given frame, weighted by 
their mean frequency.

• Common-onset grouping of the tracks
Within a given frame tolerance from the detected onset.

• Each track on each group can be                                                   
of the following types:
1. Nonoverlapping (NOV)
2. Overlapping with track from                                                                 

previous onset (OV)

3. Overlapping with synchronous track                                                             
(from the same onset)

• To distinguish between types                                                         
1 and 3:

Matching of individual tracks with                                                                           
the models
Unsufficient robustness in preliminary                                                                         
tests
Origin of onset separability constraint
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• Each common-onset group of nonoverlapping sinusoidal tracks           is 
matched against each stored prototype envelope.

• To that end, the following timbre similarity measures have been formulated:

Group-wise global Euclidean distance to the mean surface M

Group-wise likelihood to the Gaussian Process with parameter vector

14
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Timbre matching (2)
• To allow robustness against amplitude scalings and note lengths, the similarity 

measures are redefined as optimization problems subject to two parameters:

Amplitude scaling parameter  
Time stretching parameter N (       and       denote the amplitude and frequency 
values for a track that has been stretched so that its last frame is N.) 
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Exhaustive optimization surface (piano note)

Amplitude scaling profile Time stretching profile

Weighted likelihood:                                       
  is the track mean frequency
  is the track length

Unweighted likelihood:          1 
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Application to polyphonic instrument recognition

• Same model library: 
5 classes (piano, clarinet, oboe, trumpet, violin)

• Each experiment contains 10 mixtures of 2 to 4 instruments

• Comparison of the 3 optimization-based timbre similarity measures 

Euclidean, Likelihood and Weighted Likelihood

• Comparison between consonant intervals and dissonant intervals

• Note-by-note accuracy, cross-validated

16

Detection accuracy (%) for simple mixtures of one note per instrument

Detection accuracy (%) for mixtures of sequences containing several notes
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Track retrieval

• Goal: to retrieve the missing and overlapping parts of the sinusoidal tracks by 
interpolating the selected prototype envelope

• 2 operations:

Extension: tracks (of types 1 and 3) shorter than the current note are extended 
towards the onset (pre-extension) or towards the offset (post-extension), ensuring 
amplitude smoothness.

Substitution:  overlapping tracks (type 2) are retrieved from the model in their entirety 
by linearly interpolationg the prototype envelope at the track’s frequency support.

• Finally, the tracks are resynthesized by additive synthesis.
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Evaluation of Mono Separation
• Experimental setups:   (170 mixtures in total)

• Reference measure:     Spectral Signal-to-Error Ratio (SSER)

• Basic experiments:

• Extended experiments:

18

5.2.2 Onset detection 147

Type Name Source content Harmony Instruments Polyphony

Basic

EXP 1 Individual notes Consonant Unknown 2,3,4
EXP 2 Individual notes Dissonant Unknown 2,3,4
EXP 3 Sequence of notes Cons., Diss. Unknown 2,3
EXP 3k Sequence of notes Cons., Diss. Known 2,3

Extended

EXP 4 One chord Consonant Unknown 2,3
EXP 5 One cluster Dissonant Unknown 2,3
EXP 6 Sequence with chords Cons., Diss. Known 2,3
EXP 7 Inharmonic notes - Known 2

Table 5.1: Table of experimental setups for the monaural separation system.

EXP 7 additionally uses a trained model of inharmonic bell sounds. Each
model was trained using the procedure detailed in Fig. 4.3 and through-
out the previous chapter. They were trained with individual note samples
(fs = 44.1kHz) from the RWC Musical Instrument Sound database [67]
corresponding to the fourth octave (C4 to B4) and including all three dif-
ferent dynamic levels: forte, mezzoforte and piano. All piano, clarinet, oboe
and trumpet samples correspond to the “normal” playing style, and violin
was played without vibrato. The training parameters used were G = 40
frequency grid points, D = 10 PCA dimensions, and linear frequency inter-
polation for the time-frequency training data matrix.

In all experiments, cross-validation was ensured by testing with one in-
strument exemplar and training with the remaining exemplars of the RWC
database. Piano, clarinet and violin are represented by 3 instrument exem-
plars; oboe and trumpet by 2. The total size of the database is of 414 files.
Each experimental setup contains a collection of 10 mixtures for each degree
of polyphony, except the sequence experiments EXP 3, EXP 3k and EXP 6,
containing each 20 mixtures for each polyphony. This makes a total of 170
individual separation experiments.

5.2.2 Onset detection

Sinusoidal extraction is followed by a simple onset detection stage, based on
counting the number of new tracks at any given time. The procedure will be
illustrated by an example mixture consisting of a sequence of 8 notes played
alternatively by a piano and by an oboe. Figure 5.2(a) shows the frequency
support of the partial tracks resulting from the additive analysis of such a
mixture.

Let b(r) denote the function giving the number of tracks born at frame r.
This function, normalized by its maximum, is plotted as the dashed line on
Fig. 5.2(b). Taking this function as the onset detection function might work
for simple mixtures where a robust sinusoidal analysis is possible. Very often,
however, many high-frequency partials are only detected several frames after
the real onset of the corresponding note. This is due to their more unstable

5.3.3 Experiments with chords and clusters 163

Polyphony
Source type 2 3 4

Individual notes, consonant (EXP 1) 6.93 dB 5.82 dB 5.35 dB
Individual notes, dissonant (EXP 2) 9.38 dB 8.36 dB 5.95 dB
Sequences of notes (EXP 3k) 6.97 dB 7.34 dB -

Table 5.4: Results (averaged SSER) for the basic experiments.

contained similar mixtures with well-defined constraints and characteristics,
making their averaged evaluation more statistically significant.

5.3.3 Experiments with chords and clusters

A novelty of the presented approach compared with previous separation
systems based on Sinusoidal Modeling is that it is able to separate simulta-
neously played notes (i.e., chords6) produced by a single instrument. As has
already been noted, this is because both timbre matching and track exten-
sion/substitution are based on tracks grouped solely following common-onset
and common-dynamic-behavior criteria. No harmonic or quasi-harmonic
relationships are required for a track to be grouped into a common-onset,
same-instrument separated entity.

To illustrate and evaluate this capability, the “extended” experimental
setups EXP 4 to EXP 6 were defined. As counterparts of, respectively, EXP
1 and EXP 2, both EXP 4 and EXP 5 include short mixtures of only one
chord instance per instrument. The difference between both mixture types
pertain again the harmonic nature, as either consonant or dissonant. When
considering chords however, an additional consideration must be taken into
account. In this case, there is a distinction between intra-class harmony
(i.e., the harmonic relationships between the constituent notes of a chord),
and inter-class harmony (between different chords played by different instru-
ments).

Inter-class dissonance, as in the individual-note case, will result in less
overlaps and better separation. On the contrary, as it will be seen, the effect
of intra-class dissonance is exactly the opposite. If a chord contains several
notes in highly dissonant mutual relationships, its corresponding track group
will contain many non-overlapping tracks. These will “cover” the frequency
range more tightly and make collisions with the next chord’s tracks more
probable, decreasing separation quality. Consonant chords, in contrast, will
have many tracks overlapping in the high-energy area, and will thus leave
empty frequency gaps to be filled by tracks of the upcoming chord.

To test this new harmonic implications, EXP 4 was based on 20 mixtures

6The usual musical definition of chord is a group of three or more simultaneously
sounding notes. A group of two simultaneous notes is more appropriately termed a dyad.
For simplicity, “chord” will be used here in either case.

164 5.3 Evaluation of separation performance

No. Instruments
Source type 2 3

One chord (EXP 4) 7.12 dB 6.74 dB
One cluster (EXP 5) 4.81 dB 4.77 dB
Sequences with chords and clusters (EXP 6) 4.99 dB 6.29 dB
Inharmonic notes (EXP 7) 7.84 dB -

Table 5.5: Results (averaged SSER) for the extended experiments.

of 2 and 3 instruments playing chords with mostly consonant intra-class
intervals (such as major and minor triads, and seventh chords, see Fig.
5.9(a) for a two-note example), and EXP 5 on 20 mixtures with the most
internally-dissonant chords possible: chromatic clusters7. Figure 5.10 shows
the separation of a mixture of a chromatic cluster played by the trumpet and
comprising all notes between A4 and C5, and of a diatonic 3-note cluster
played by the piano. The averaged results shown on the first two rows of
Table 5.5 confirm the higher difficulty of separating consecutive clusters.
These experiments were performed with the instruments unknown, as can
be observed from the empty rows on the segmentation charts.

As a counterpart to EXP 3, a set of 20 mixtures of sequences, this
time including chords, was generated and evaluated as EXP 6, with the
instruments known. Test mixtures included chord-only sequences (such as
the one on Fig. 5.11) and hybrid sequences containing both chords and
individual notes (such as on Fig. 5.12). The averaged SSER results included
on the table accentuate the mixture disparity problem mentioned in the last
section.

5.3.4 Experiments with inharmonic sounds

The same working principle that allows the separation of same-instrument
chords as single entities, namely the fact that grouping is only based on the
amplitude behavior of the partials, and not on their frequency character-
istics, allows dealing with sounds containing partials that do not follow a
harmonic or even quasi-harmonic frequency positioning. The only difference
to be taken into account is that the additive analysis stage needed to per-
form the training corresponding to such an instrument must be performed
in inharmonic mode (see Sect. 4.2), without an f0-based prediction of the
partial frequencies.

To the aim of demonstrating this capability, a new timbre model was
trained using a collection of 36 tubular bell samples from the RWC database
[67], with predominant pitches C4 to B4. Then, for the final set of exper-

7A musical cluster is a chord containing notes that are consecutive on a given scale.
A chromatic cluster is a special case in which the notes are adjacent semitones, and a
diatonic cluster is the equivalent with whole-tones.
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Stereo separation
• Extension of the previous mono 

system to take into account 
spatial diversity in linear stereo 
mixtures (M = 2)

• Principle:

A first Blind Source Separation 
(BSS) stage exploiting spatial 
diversity for a preliminary 
separation, solely assuming 
sparsity (Laplacian sources).  
After [Bofill&Zibulevsky01].

Refine the partially-separated 
BSS channels applying a 
modified version of the 
previous sinusoidal and model-
based methods.

• No onset separation required!
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BSS stage: mixing matrix estimation
• To increase sparsity, both BSS stages are performed in the STFT domain.

• If the sources are enough sparse, the mixture bins (with radii                          
and angles                              ) concentrate around the mixing directions.

• The mixing matrix can be thus recovered by angular clustering.

• To smooth the obtained polar histogram, kernel-based density estimation is 
used, with a triangular polar kernel.

20

Estimated density:

Triangular kernel:

0.2

0.4

0.6

0.8

1

30

60

90

120

150

180 0

RightLeft

Mixture scatter and found directions

Estimated density (polar)

[Bofill&Zibulevsky01] P. Bofill and M. Zibulevsky. Underdetermined Blind Source Separation Using Sparse Representations. Signal Processing, Vol. 81,  2001.
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BSS stage: source estimation

• Sparsity assumption: sources are Laplacian:

• Given an estimated mixing matrix Â and assuming the sources are Laplacian, 
source estimation is the L1-norm minimization problem:
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• For each bin x, a reduced 2 x 2 mixing  
matrix                          is defined,  whose 
columns are the mixing directions enclosing it.

• Source estimation is performed by inverting 
the determined 2 x 2 subproblem and by 
setting all other N-M sources to zero:

• This minimization problem can be 
interpreted geometrically as the 
shortest-path algorithm:

Example of shortest-path resynthesis
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Extraneous track detection
• After BSS, the same sinusoidal modeling, onset detection, track grouping and 

timbre matching stages are applied to the partially-separated channels. 

All of these stages are now far more robust because the interfering sinusoidal 
tracks have already been partially suppressed.
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• New module: extraneous track detection
Detects interfering tracks most probably introduced 
by the other channels, according to three criteria:

1. Temporal criterion. Deviation from onset/offset.

2. Timbral criterion.  Matching of individual tracks, 
with the best timbre matching parameters. 
Length dependency must be cancelled:

3. Inter-channel comparison. Search tracks in the 
other channels with similar frequency support 
and decide according to average amplitudes.

• Finally, extraneous sinusoidal tracks are subtracted from 
the BSS channels.

Temporal criterion
Timbral criterion
Inter-channel comparison

Example: three piano notes, separated from a 
3-voice mixture with an oboe and a trumpet. 
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Evaluation of Stereo Separation
• Same instrument model database (5 classes)

• 10 mixtures per experimental setup, 110 mixtures in total, cross-validated

• Polyphonic instrument detection accuracy (%):

• Separation quality
Apart from SSER, Source-to-Distortion (SDR), Source-to-Interferences (SIR) 
and Source-to-Artifacts Ratios (SAR) can be now computed (locked phases)

Comparison with applying only track retrieval to the BSS channels
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6.4 Evaluation of classification performance 179

Consonant (EXP 1s) Dissonant (EXP 2s)
Polyphony 2 3 4 Av. 2 3 4 Av.

Euclidean distance 63.33 77.14 76.57 72.35 60.95 86.43 78.00 75.13
Likelihood 86.67 84.29 82.38 84.45 81.90 81.95 81.33 81.73
Weighted likelihood 70.00 70.95 66.38 69.11 78.10 78.62 74.67 77.13

Table 6.1: Instrument detection accuracy (%) for simple stereo mixtures of
one note per instrument.

Sequences (EXP 3s)
Polyphony 2 3 Av.

Euclidean distance 64.71 59.31 62.01
Likelihood 67.71 74.44 71.08
Weighted likelihood 69.34 58.34 63.84

Table 6.2: Instrument detection accuracy (%) for stereo mixtures of se-
quences containing several notes.

monaural mixtures containing individual notes in consonant intervals (EXP
1), individual notes in dissonant intervals (EXP 2), and sequences of notes
(EXP 3), with a polyphony of 2 to 4 instruments. Each degree of polyphony
in EXP 1 and EXP 2 is represented by 10 mixtures, and in EXP 3 by 20
mixtures. To generate the instantaneous, stereo counterpart for those ex-
perimental setups (which will be called, respectively, EXP 1s, EXP 2s and
EXP3s), the sources were equally distributed across the stereo field, as was
done in Sect. 3.4.2.

The used evaluation measure is again the note-by-note accuracy. Also,
the different timbre similarity measures introduced in Sect. 5.2.4 are com-
pared. These were: averaged Euclidean distance (Eq. 5.5), Gaussian like-
lihood (Eq. 5.6) and Gaussian likelihood weighted proportionally to the
length of the constituent tracks, and inversely-proportional to the mean
track frequency (Eq. 5.7). The timbre library is the same as the one used in
the two previous chapters: a set of 5 trained prototype envelopes of piano,
clarinet, oboe, trumpet and non-vibrato violin. For more details about the
training parameters, see Sect. 4.7.

The results are shown in Table 6.1 for EXP 1s and EXP 2s, and in Table
6.2 for EXP 3s. As could be expected, classification accuracy is significantly
better than in the monaural case, attaining 87.67% with 2 channels (com-
pared to 79.81% in mono), 86.43% with 3 channels (compared to 77.79%)
and 82.38% for 4 channels (compared to 61.40%). For the sequences, the
best average accuracy is 71.08%, compared to 60.04% in the monaural setup.

Apart from the improvement in accuracy, two notable aspects differ from
the monaural case. The first is that the accuracy is much more independent
from the degree of polyphony. In fact, there are even cases where the ac-
curacy is better with higher polyphonies, such as with 3-channel polyphony
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182 6.5 Evaluation of separation performance

Track
retrieval Sinusoidal subtraction

Source type Polyph. SSER SSER SDR SIR SAR

Individual notes, cons. (EXP 1s)
3 13.92 21.13 20.70 43.77 20.77
4 12.10 17.13 16.78 40.83 16.83

Individual notes, diss. (EXP 2s)
3 14.37 24.20 23.63 47.01 23.72
4 12.06 21.33 20.76 43.74 20.81

Sequences of notes (EXP 3s) 3 12.52 22.00 21.48 44.79 21.53

Table 6.4: Results for the stereo version of the basic experiments of Chapter
5 using track retrieval and sinusoidal subtraction.

Track
retrieval Sinusoidal subtraction

Source type Polyph. SSER SSER SDR SIR SAR

Individual notes, cons. (EXP 8s)
3 13.36 18.26 17.35 40.48 17.39
4 14.88 15.31 14.96 36.25 15.06

Individual notes, diss. (EXP 9s)
3 11.88 21.72 20.91 44.56 21.03
4 15.10 18.93 18.24 40.36 18.30

Sequences with chords (EXP 10s)
3 11.21 17.95 17.17 32.30 17.44
4 10.57 12.16 11.18 26.26 11.51

Table 6.5: Results for the simultaneous-note experiments using track re-
trieval and sinusoidal subtraction.

For example, SSER, SDR and SAR values for the M = 2 case were typically
higher than 80 dB, and SIR values higher than 130 dB.

Stereo track retrieval outperforms monaural track retrieval by around 5
to 7 dB (compare with Table 5.4). In turn, sinusoidal subtraction signifi-
cantly outperforms stereo track retrieval in terms of SSER, the difference
ranging between around 5 dB and 10 dB. Other expected behaviors hold
here as well (dissonances are easier to separate than consonances, higher
polyphonies are more difficult), however in a less pronounced manner than
in the monaural case.

In the presence of large interferences, the sources separated by means of
spectral subtraction typically improve averaged performance measures by 2
to 4 dB in the case of SDR and SAR and by 3 to 6 dB in the case of SIR
when compared to the output channels of the BSS stage.

6.5.2 Experiments with simultaneous notes

The performances obtained for the new experiments involving common-onset
notes (Table 6.5) were lower on average, but not significantly so (the average
difference is of around 1 to 2 dB). This again confirms the effectiveness of the
BSS stage in providing a good partially-separated basis for the remaining
refinements. The degree of improvement of sinusoidal subtraction over track
retrieval is less homogeneous than with the basic experiments, this time
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Overall improvements:

Compared to mono separation: 
5-7 dB SSER

Compared to stereo track retrieval:
5-10 dB SSER

Compared to using only BSS: 
2-4 dB SDR and SAR
3-6 dB SIR
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Conclusions

• Timbre models 
Representation of prototype spectral envelopes as either curves in PCA space 
or templates in time-frequency

Use for musical instrument classification: 94.86% accuracy with 5 classes.

• Monaural separation (based on sinusoidal modeling and timbre models)

No harmonicity assumption: can separate inharmonic sounds and chords
No multipitch estimation
No note-to-source clustering
Drawback: onset separation required
Use for polyphonic instrument recognition: 79.81% accuracy for 2 voices, 
77.79% for 3 voices and 61% for 4 voices.

• Stereo separation (based on sparsity-BSS, sinusoidal mod. and timbre models)

All the above features, plus:
Keeps (partially separated) noise part
Far more robust
No onset separation required
Better than only BSS and than stereo track retrieval
Use for polyphonic instrument recognition: 86.67% accuracy for 2 voices, 
86.43% for 3 voices and 82.38% for 4 voices.
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Outlook

• Separation-for-understanding applications
Use of the separation systems in music analysis or transcription applications

• Improvement of the timbre models
Test other transformations, e.g. Linear Discriminant Analysis (LDA)

Other methods for extracting prototype curves, e.g. Principal Curves

Separation of envelopes into Attack-Decay-Sustain-Release phases

Morphological description of timbre as connected objects (clusters, tails) 

• Other applications of the timbre models
Further investigation into the perceptual plausibility of the generated spaces

Synthesis by navigation in timbre space

Morphological (object-based) synthesis in timbre space

• Improvement of timbre matching for classification and separation
Other timbre similarity measures

More efficient parameter optimization, e.g.  with Dynamic Time Warping (DTW) 

Avoiding the onset separation constrained in the monaural case.

• Extension to more complex mixtures
Delayed and convolutive (reverberant) mixtures

Higher polyphonies
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