
FACTORSYNTH: A MAX TOOL FOR SOUND ANALYSIS AND
RESYNTHESIS BASED ON MATRIX FACTORIZATION

Juan José Burred
Paris, France

jjburred@jjburred.com

ABSTRACT

Factorsynth is a new software tool, developed in the Max
environment, that implements sound processing based
on matrix factorization techniques. In particular, Non-
negative Matrix Factorization is applied to the input
sounds, which produces a set of temporal and spectral
components that can be then freely manipulated and com-
bined to produce new sounds. Based on a simple graph-
ical interface that visualizes the factorization output, Fac-
torsynth aims at bringing the ideas of matrix factorization
to a wider audience of composers and sound designers.

1. INTRODUCTION

Any kind of data in matrix form can be subjected to fac-
torization, i.e., to an algorithm that yields two or more out-
put matrices (the factors) which, when multiplied back to-
gether, produce an approximation of the input. There is
a wide range of factorization algorithms that can produce
very different factor matrices, depending on the constraints
imposed by the desired application. By analyzing the re-
sulting factor matrices it is possible to discover and sepa-
rate important underlying components, often called latent
variables, that were hidden and mixed within the original
data. Because of this, factorization is central to many com-
puting fields such as data compression, computer vision or
machine learning.

In the audio domain, matrix factorization is most often
applied to the magnitude or power spectrogram, which is a
matrix whose rows are time-varying energies of individual
frequency bands, and whose columns are spectra at given
times. One of the most widely used factorization algo-
rithms in sound applications is Non-negative Matrix Fac-
torization (NMF) [1], which imposes the constraint that all
elements of the input and output matrices have to be zero or
positive. NMF results in two factor matrices, one contain-
ing spectra (called bases) and the other containing tempo-
ral functions (called activations). The combination of one
of the spectral bases with its corresponding activation re-
sults in a component sound, an approximation to a sonic
entity or event contained in the input signal. Component

Copyright: c© 2016 Juan José Burred et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

sounds can be, for instance, individual notes, drum hits, or
any kind of temporally or spectrally distinctive event.

NMF is thus ideal for applications that require analyzing
or resynthesizing separate elements of the input sound, and
is currently widely used in fields such as source separation
or music information retrieval. An illustration of a simple
sound decomposed by NMF is shown in Fig.1(a). The in-
put sound (spectrogram shown) is a sequence of 3 piano
notes of different pitches. The output of the factorization
are a set of 3 spectral bases (displayed at the left of the
spectrogram) and a set of temporal activations (displayed
on top). It can be seen that the peaks in the activations
correspond to the temporal positions of the corresponding
spectral bases in the input sound.

The application of matrix factorization to musical cre-

h 1
h 2

h 3

w
1

w
2

w
3

time

fr
eq

ue
nc

y
(a) Input spectrogram with extracted spectral bases (left) and
activations (above)

(b) Display convention used in Factorsynth

Figure 1. Visualization of a simple sound (three-note pi-
ano melody) decomposed by NMF.

mailto:jjburred@jjburred.com
http://creativecommons.org/licenses/by/3.0/


ation is fairly recent [2–5]. As a sound decomposition
method, it fits well into the analysis/resynthesis paradigm
of computer and electronic music, in which a sound is
modified by manipulating parameters resulting from its
previous analysis (or, in cross-synthesis, from the anal-
ysis of a second sound). In traditional additive analy-
sis/resynthesis (phase vocoder), the decomposition bases
are sinusoids. In this context, matrix factorization can
be seen as a higher-abstraction version of additive analy-
sis/resynthesis in which each sinusoid has been replaced
by a full spectrum.

A framework for performing sound modifications and
cross-synthesis based on factorization was presented in [6].
This article presents a graphical implementation thereof in
the Max environment. The basic principle of Factorsynth is
the ability to freely recombine any spectral basis with any
temporal activation resulting from factorization. In other
systems aimed at analysis and separation, each basis al-
ways remains coupled with its corresponding activation,
since the goal is to reconstruct elements that are actually
present in the original sound. In contrast, here the goal is
to create new sounds, and so arbitrary recombinations are
allowed.

A preliminary implementation was presented in the form
of a command-line executable [6], which was of limited
usability and control capabilities. The new Max version
provides a graphical interface and thus the possibility for
the user to visualize the result of factorization, listen to
the separated components, edit the extracted bases and ac-
tivations, and closely control the resynthesis process. The
ability to freely perform any base/activation combination is
emphasized by the central element of the graphical inter-
face: a switchboard that symbolizes the couplings between
bases and activations. An example of the Factorsynth vi-
sualization of factorization and recombination is shown in
Fig.1(b), which corresponds to the same three-note piano
sound of Fig.1(a). For easier alignment, the spectral bases
are displayed above the switchboard, and the temporal ac-
tivations to its left. An activated button on the switchboard
means that the basis above it and the activation to its left
are to be combined for resynthesis. In the figure example,
the switchboard has its diagonal elements activated, which
means that in this case resynthesis will approximate the
original sound without modifications.

Factorsynth is freely available for download 1 . Several
sound examples are also presented in the download page.

2. THE FACTORSYNTH INTERFACE

A number of controls are available in the interface, to-
gether with the display of the components and of the switch-
board. Two usage scenarios will be considered here: the
manipulation of a single sound and cross-synthesis.

2.1 Single-sound manipulation

Fig.2 shows the Factorsynth interface in a single-sound
manipulation scenario, running on Max 7. Note that the

1 http://www.jjburred.com/software/factorsynth

Figure 2. Main interface of Factorsynth for processing of
a single sound.

interface allows to load two files; for single-sound process-
ing, only the first file is loaded. Next to the file name is a
menu to select the number of components for the extrac-
tion. Remember that one component corresponds to one
base/activation pair. In Fig.2, six components have been
set for factorization.

When the number of components is chosen, the size of
the switchboard and the number of display areas for the
bases and activations are adjusted. NMF decomposition
is launched when clicking on the ‘factorize’ button corre-
sponding to the loaded sound. Computation time is around
25% of the length of the input file (a 4s file will take 1s to
decompose). After computation, the display areas are filled
with the bases (above) and the activations (at the left). The
bases are displayed in logarithmic amplitude and linear fre-
quency.

Clicking the ‘factorize’ button again repeats factoriza-
tion. Successive factorization runs can produce slightly
different results since NMF is a numerical optimization
algorithm that relies on random initialization 2 . This can
result in small amplitude differences and, more noticeably,
a different ordering of the output bases and activations.

There is a scale ambiguity of the factors produced by any
factorization, since a product (cx)× (y/c) is the same for
any value of c. In other words, it is possible to arbitrarily
transfer energy from the bases to the activations, or vice-
versa, without changing the validity of the factorization. In
Factorsynth, the following convention has been applied:

1. First, the spectral bases are individually max-
normalized (i.e., re-scaled so that they all reach the
maximum amplitude of the display area) and the re-
sulting energy differences transferred to the activa-
tions.

2. Then, for display, the activations are globally max-
normalized (i.e., re-scaled so that only one reaches
the maximum amplitude).

2 The interested reader can find details about the NMF algorithm in the
extensive literature (e.g.: [7]).

http://www.jjburred.com/software/factorsynth


Figure 3. Modes for automatic switchboard configuration.

What this means in terms of interpretation of the graph-
ical output is that the energy information is contained in
the activations. A low-energy component will have a low-
amplitude activation (such as the last component at the bot-
tom of Fig.2), but its spectral base will still span the whole
display range.

The bases and activations are displayed on editable multi-
slider objects, so that the user can draw on them to modify
the sound to be resynthesized.

The user can then click on the switchboard buttons to as-
sign the desired base/activation pairs for the resynthesis.
When clicking on a switchboard button, a resynthesis and
playback of the corresponding base/activation pair is in-
stantly launched (the computation time needed for resyn-
thesis is negligible) in order to listen to that separate com-
ponent. Thus, buttons on the diagonal will play coupled
base/activation pairs which were present in the original
sound, and off-diagonal buttons will generate artificial com-
ponents not originally present. Once the desired individual
connections have been made, the full resynthesized sound
can be played by clicking on the ‘play all’ button.

Instead of manually selecting the switchboard connec-
tions, there are 4 buttons to set them up automatically (see
Fig.3):

• Reconstruction. Sets the diagonal buttons on, all
the others off. When full resynthesis is performed,
this results in the playback of an approximation of
the original sound. Reconstruction is never identi-
cal to the input, since NMF, like most factorization
algorithms, is approximate.

• Scramble. Generates a random permutation of the
connections. The connections are one-to-one (injec-
tive).

• Random. All connections are randomly chosen. Rep-
etitions are possible: a single activation can control
several bases, or several activations can control a sin-
gle base.

• Clear. Sets all connections to zero.

2.2 Cross-synthesis

When two input sound files are selected, the interface en-
ters in cross-synthesis mode (Fig.4). The switchboard is
divided into four parts. The two parts on the diagonal (with
the blue buttons) correspond to the single-sound manipu-
lation connections, controlling the base/activation combi-
nations within each of the input sounds. The two other

Figure 4. Factorsynth interface in cross-synthesis mode.

sectors of the switchboard, distinguished by their red but-
tons, control connections between bases of one sound and
activations of the other, thus generating cross-components.

In this type of factorization-based cross-synthesis [5], in-
ternal temporal elements of one sound can thus control in-
ternal spectral shapes of the other.

3. RESYNTHESIS

It is worth going into some detail about the resynthesis
process in order to understand the sonic results of Fac-
torsynth. As its name implies, NMF works only on real,
non-negative numbers, which means that phase informa-
tion is discarded and only magnitude or power spectro-
grams are taken as the input. The combination of bases
and activations (also comprised of real numbers) produce
a set of magnitude spectrograms from which the synthe-
sized output sounds have to be generated. Since the phase
information was discarded from the outset, there are two
options at this point:

• Either new phase information is generated randomly
or by means of an optimization method, such as the
Griffin and Lim algorithm [8], or

• Phase information is taken from the original input
complex spectrogram.

The second option has been chosen for Factorsynth due
to its superior sound quality and faster computation time.
However, instead of directly attaching the input phases to
the output spectrogram, Factorsynth uses Wiener filtering
[6], which is known from source separation to produce
more natural sounds.

Wiener filtering consists of computing a time-frequency
mask from the output magnitude spectrograms that, when
applied (by element-wise multiplication) to the input com-
plex spectrogram produces the output spectrogram. Such a
Wiener mask can be understood as a time-varying filter that
is, in effect, performing subtractive synthesis from the in-
put sound. Once the output complex spectrogram has been



obtained in this way, an overlap-add algorithm is applied
to invert it and produce the output time-domain signal.

The choice of Wiener filtering for resynthesis has an im-
portant implication for Factorsynth: if a high-energy ac-
tivation is combined with an originally unrelated basis, it
can happen that the resulting component will nevertheless
be of low energy. Indeed, frequency contents can be hardly
amplified if there is only little energy at those frequencies
in the corresponding position of the input sound.

Factorsynth is able to handle both mono and stereo sig-
nals. For stereo signals, NMF is applied to the sum of both
channels, and the resulting time-frequency masks are ap-
plied to both left and right input spectrograms to generate
each of the output channels.

4. THE FACTORSYNTH∼ EXTERNAL

The core of the Factorsynth Max patch is the factorsynth∼
external object. It implements both NMF decomposition
and Wiener resynthesis. Each factorsynth∼ object handles
a single input file, so for cross-synthesis, two instances are
needed. Linear algebra operations inside the object (FFTs,
matrix multiplications, outer products...) are implemented
using Apple’s highly optimized vDSP library, part of the
Accelerate framework.

A usage example for both factorization and resynthesis is
shown in Fig.5.

4.1 Factorization operation

The sequence of operations needed to perform a factoriza-
tion is the following:

Figure 5. Usage example of the factorsynth∼ exter-
nal.

1. The number of components K is passed as an integer
to the left inlet.

2. A message of the form decomp filename is
passed to the left inlet, launching spectrogram com-
putation and NMF factorization. The specific NMF
algorithm implemented in factorsynth∼ is Kullback-
Leibler (KL) NMF.

3. Activations are output from the third outlet as a se-
quence of K lists.

4. Bases are output from the fourth outlet as a sequence
of K lists.

The output list sequences could then, for instance, be han-
dled by gate objects to be sent to separate display areas, as
shown in Fig.5.

4.2 Resynthesis operation

To launch a resynthesis with a given set of base/activations
pairs, the following operation sequence must be performed:

1. A sequence of lists are read into the middle inlet,
containing the activations.

2. A sequence of lists are read into the right inlet, con-
taining the bases.

3. A bang is sent to the right inlet, signaling the end
of the incoming data and launching the computation
of the global Wiener mask and its application to the
input spectrogram. There is no need to reload the
input audio file since the spectrograms are stored in
memory for every instance of a factorsynth∼ object.

4. The masked spectrogram is converted back into the
time domain using the overlap-add technique. The
resulting audio is output as a mono signal from the
first outlet, or as a stereo signal from the left and
second outlets.

5. FUTURE DEVELOPMENTS

Aside from being computationally intensive (as mentioned
before, around 25% of the input file length), NMF factor-
ization is an intrinsically off-line operation, since the full
length of the input signal has to be observed prior to start-
ing the decomposition algorithm. Thus, the current version
of Factorsynth is non-real-time and works only on sound
files. An important goal for future versions is the ability to
process incoming audio data in real- or near-real-time.

A relatively straightforward way of implementing a real-
time cross-synthesis would be to perform a preliminary
factorization of a sound and then use an arbitrary selec-
tion of its stored spectral bases to filter the incoming au-
dio stream. A second, most sophisticated way would be to
explore online factorization algorithms [9] and assess the
feasibility of a quick decomposition of the input stream.

Another direction for future developments will be the ex-
ploration of alternative interfaces for the representation and
recombination of the extracted bases and activations. The



current interface, based on displaying individual bases and
activations, might become ineffective when using a large
number of components (in source separation, tens of com-
ponents are often used). In that case, an interface based
on a 2-D scatter plot might be more appropriate, in which
bases or activations could be represented as points and
placed in coordinates corresponding to a given spectral or
temporal shape feature. Connections in the cross-synthesis
switchboard could then be generated automatically follow-
ing criteria of proximity in such a feature space.

6. CONCLUSIONS

This paper has introduced Factorsynth, a graphical tool
for the Max environment that exploits matrix factoriza-
tion techniques to perform sound manipulations. Stem-
ming from data analysis and machine learning, matrix fac-
torization techniques remain relatively unknown in the field
of computer music. It has recently been shown that such
techniques constitute a promising new alternative to sinu-
soidal or source/filter models for analysis/resynthesis ap-
plications, and they allow a new kind of cross-synthesis
that operates at the level of internal elements of the in-
volved sounds (spectral shapes, salient temporal events...),
rather than on global features. Factorsynth aims at bringing
those new concepts to a wider audience of composers and
sound designers. Its simple graphical interface visualizes
all extracted elements and allows the user to modify them
and carefully control their combination before resynthesis.

Acknowledgments

The author would like to thank Marco Liuni, Emanuele
Palumbo, Carmine Emanuele Cella and Nicolas Obin for
the insightful discussions and helpful suggestions.

7. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol. 401, pp. 788–791, 1999.

[2] S. S. Topel and M. A. Casey, “Elementary sources:
Latent component analysis for music composition,” in
Proc. ISMIR, Miami, USA, 2011.

[3] R. Sarver and A. Klapuri, “Application of non-negative
matrix factorization to signal-adaptive audio effects.”
in Proc. DAFX, Paris, France, 2011.

[4] R. Maguire, “Creating musical structure from the tem-
poral dynamics of soundscapes,” in Proc. Int. Conf. on
Information Sciences, Signal Processing and Applica-
tions (ISSPA), Montreal, Canada, 2012.

[5] J. J. Burred, “Cross-synthesis based on spectrogram
factorization,” in Proc. ICMC, Perth, Australia, 2013.

[6] ——, “A framework for music analysis/resynthsis
based on matrix factorization,” in Proc. ICMC, Athens,
Greece, 2014.

[7] D. Lee and H. Seung, “Algorithms for non-negative
matrix factorization,” in Neural Information Process-
ing Systems, Denver, USA, 2001.

[8] N. Sturmel and L. Daudet, “Signal reconstruction from
STFT magnitude: a state of the art.” in Proc. DAFX,
Paris, France, 2011.

[9] A. Lefévre, F. Bach, and C. Févotte, “Online algo-
rithms for nonnegative matrix factorization with the
Itakura-Saito divergence,” in Proc. WASPAA, New
Paltz, USA, 2011.


	 1. Introduction
	 2. The Factorsynth interface
	2.1 Single-sound manipulation
	2.2 Cross-synthesis

	 3. Resynthesis
	 4. The factorsynth external
	4.1 Factorization operation
	4.2 Resynthesis operation

	 5. Future developments
	 6. Conclusions
	 7. References

