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Abstract. A compact, general and accurate model of the timbral char-
acteristics of musical instruments can be used as a source of a priori
knowledge for music content analysis applications such as transcription
and instrument classification, as well as for source separation. We de-
velop a timbre model based on the spectral envelope that meets these
requirements and relies on additive analysis, Principal Component Anal-
ysis and database training. We put special emphasis on the issue of fre-
quency misalignment when training an instrument model with notes of
different pitches, and show that a spectral representation involving fre-
quency interpolation results in an improved model. Finally, we show the
performance of the developed model when applied to musical instrument
classification.

1 Introduction

Our purpose is to develop a model that represents the timbral characteristics of
a musical instrument in an accurate, compact and general manner. Such a model
can be used as a feature in classification applications, or as a source model in
sound separation, polyphonic transcription or realistic sound transformations.

The spectral envelope of a quasi-harmonic sound, which can be accurately
described by the amplitude trajectory of the partials extracted by means of
additive analysis, is the basic factor defining its timbre. Salient peaks on the
spectral envelope (formants or resonances) can either lie at the same frequency,
irrespective of the pitch, or be correlated with the fundamental frequency. In
this paper, we shall refer to the former as f0-invariant features of the spectral
envelope, and to the latter as f0-correlated features.

Model generalization is needed in order to handle unknown, real-world input
signals. This requires a framework of database training and a consequent ex-
traction of prototypes for each trained instrument. Compactness does not only
result in a more efficient computation but, together with generality, implies that
the model has captured the essential characteristics of the source.

Previous research dealing with spectral envelope modeling includes the work
by Sandell and Martens [1], who use Principal Component Analysis (PCA) as



a method for data reduction of additive analysis/synthesis parameters. Hour-
din, Charbonneau and Moussa [2] apply Multidimensional Scaling (MDS) to
obtain a timbral characterization in form of trajectories in timbre space. A re-
lated procedure by Loureiro, de Paula and Yehia [3] has been recently applied
to perform clustering based on timbre similarity. De Poli and Prandoni [4] pro-
pose their sonological models for timbre characterization, which are based on
applying PCA or Self Organizing Maps (SOM) to an estimation of the envelope
based on Mel Frequency Cepstral Coefficients (MFCC). These approaches are
mainly intended to work with single sounds, and do not propose a statistical
training procedure for a generalized application. The issue of taking into ac-
count the pitch dependency of timbre within a computational model has only
been addressed recently, as in the work by Kitahara, Goto and Okuno [5].

In the present work, we combine techniques aiming at compactness (PCA)
and envelope accuracy (additive analysis) with a training framework to improve
generality. In particular, we concentrate on the evaluation of the frequency mis-
alignment effects that occur when notes of different pitches are used in the same
training database, and propose a representation strategy based on frequency in-
terpolation as an alternative to applying data reduction directly to the partial
parameters. We model the obtained features as prototype curves in the reduced-
dimension space. Also, we evaluate this method in one of its possible applica-
tions: musical instrument classification, and compare its performance with that
of using MFCCs as features.

We can divide the modeling approach into a representation and a prototyping
stage. In the context of statistical pattern recognition, this corresponds to the
traditional division into feature extraction and training stages.

2 Representation stage

2.1 Additive analysis

We have chosen to develop a model based on a previous full additive analysis
yielding not only amplitude, but also frequency and phase information of the
partials, all of which will be needed for reconstruction and applications involv-
ing resynthesis, such as source separation or sound transformations. Additive
analysis/synthesis assumes that the original signal x[n] can be approximated as
a sum of sinusoids whose amplitudes and frequencies vary in time:

x[n] ≈ x̂[n] =
P [n]∑
p=1

Ap[n] cos Θp[n] (1)

Here, P [n] is the number of partials, Ap[n] are their amplitudes and Θp[n] is
the total phase, whose derivative is the instantaneous frequency fp[n]. Additive
analysis consists of performing a frame-wise approximation of this model, yield-
ing a set of amplitude, frequency and phase information, x̂pl = (Âpl, f̂pl, θ̂pl), for
each partial p and each time frame l. To that end, the successive stages of pitch
detection, peak picking and partial tracking are performed. We use a standard
procedure, as described in [6].



2.2 Basis decomposition of partial spectra

In its most general form, the basis expansion signal model consists of approxi-
mating a signal as a linear combination of basis vectors bi, which can be viewed
as a factorization of the form X = BC, where X is the data matrix containing the
original signal, B = [b1,b2, . . . ,bN ] is the transformation basis whose columns
bi are the basis vectors, and C is the coefficient matrix. Most common trans-
formations of time-domain signals fall into this framework, such as the Discrete
Fourier Transform, filter banks, adaptive transforms and sparse decompositions.

Such an expansion can also be applied to time-frequency (t-f) representations,
in which case X is a matrix of K spectral bands and N time samples (usually
N � K). If the matrix is in temporal orientation (i.e., it is a N × K matrix
X(n, k)), a temporal N×N basis matrix is obtained. If it is in spectral orientation
(K ×N matrix X(k, n)), the result is a spectral basis of size K ×K. Having as
goal the extraction of spectral features, the latter case is of interest here.

Using adaptive transforms like PCA or Independent Component Analysis
(ICA) has proven to yield valuable features for content analysis [7]. In particu-
lar, PCA yields an optimally compact representation, in the sense that the first
few basis vectors represent most of the information contained in the original
representation, while minimizing the reconstruction error, and making it appro-
priate as a method for dimensionality reduction. ICA can be understood as an
extension of PCA that additionally makes the transformed coefficients statisti-
cally independent. However, since the minimum reconstruction error is already
achieved by PCA, ICA is not needed for our representation purposes. This fact
was confirmed by preliminary experiments.

2.3 Dealing with variable supports

In the context of spectral basis decompositions, training is achieved by concate-
nating the spectra belonging to the class to be trained (in this case, a musical
instrument) into a single input data matrix. As mentioned above, the spectral
envelope may change with the pitch, and therefore training one single model with
the whole pitch range of a given instrument may result in a poor timbral charac-
terization. However, it can be expected that the changes in envelope shape will
be minor for neighboring notes. Training with a moderate range of consecutive
semitones will thus contribute to generality, and at the same time will reduce
the size of the model.

In the case of additive data, the straightforward way to arrange the am-
plitudes Âpl into a spectral data matrix is to fix the number of partials to be
extracted and use the partial index p as frequency index, obtaining X(p, l). We
will refer to this as Partial Indexing (PI). However, when concatenating notes
of different pitches for the training, their frequency support (defined as the set
of frequency positions of each note’s partials) will obviously change logarithmi-
cally. This has the effect of misaligning the f0-invariant features of the spectral
envelope in the data matrix. This is illustrated in Fig. 1, which shows the con-
catenated notes of one octave of an alto saxophone. In the partial-indexed data



(a) Frequency support (b) Original partial data (c) PCA data matrix

Fig. 1. PCA data matrix with Partial Indexing (1 octave of an alto saxophone).

(a) Frequency support (b) Original partial data (c) PCA data matrix

Fig. 2. PCA data matrix with Envelope Interpolation (1 octave of an alto saxophone).

matrix depicted in Fig. 1c (where color/shading denotes partial amplitudes),
diagonal lines descending in frequency for subsequent notes can be observed,
which correspond to a misalignment of f0-invariant features. On the contrary,
those features that follow the logarithmic evolution of f0 will become aligned.

We evaluate an alternative approach consisting on setting a fixed maximum
frequency limit fmax before the additive analysis and extracting for each note
the required number of partials to reach that frequency. This is the opposite situ-
ation as before: now the frequency range represented in each model is always the
same, but the number of sinusoids is variable. To obtain a rectangular data ma-
trix, an additional step is introduced in which the extracted partial amplitudes
are interpolated in frequency at points defined by a grid uniformly sampling
a given frequency range. The spectral matrix is now defined by X(g, l), where
g = 1, . . . , G is the grid index and l the frame index. We shall refer to this ap-
proach as Envelope Interpolation (EI). This strategy does not change frequency
alignments (or misalignments), but additionally introduces an interpolation er-
ror. In our experiments, we will evaluate two different interpolation methods:
linear and cubic interpolation.

Generally, frequency alignment is desirable for our modeling approach be-
cause of two reasons. First, prototype spectral shapes will be learnt more ef-
fectively if subsequent training frames share more common characteristics. Sec-
ondly, the data matrix will be more correlated and thus PCA will be able to
obtain a better compression. In this context, the question arises of which one of
the alternative preprocessing methods, PI (aligning f0-correlated features) or EI



(aligning f0-invariant features), is more appropriate. In other words, we want to
measure which of the two kind of formant-like features are more important for
our modeling purposes. In order to answer to that, we performed the experiments
outlined in the next section.

2.4 Evaluation of the representation stage

We implemented a cross-validation setup as shown in Fig. 3 to test the validity
of the representation stage and to evaluate the influence of the different pre-
processing methods introduced: PI, linear EI and cubic EI. The audio samples
belonging to the training database are subjected to additive analysis, concate-
nated and arranged into a spectral data matrix using one of the three methods.
PCA is then performed upon the data matrix, yielding a common reduced basis
matrix Er. The data matrix is then projected upon the obtained basis, and thus
transformed into the reduced-dimension model space.

The test samples are subjected to the same pre-processing, and afterward
projected upon the basis extracted from the training database. The test samples
in model space can then be projected back into the t-f domain and, in the case
of EI preprocessing, reinterpolated at the original frequency support. Each test
sample is individually processed and evaluated, and afterward the results are
averaged over all experiment runs.

By measuring objective quantities at different points of the framework, it is
possible to evaluate our requirements of compactness (experiment 1), reconstruc-
tion accuracy (experiment 2) and generalization (experiment 3). Although each
experiment was mainly motivated by its corresponding model aspect, it should
be noted that they do not strictly measure them independently from each other.

Here we present the results obtained with three musical instruments belong-
ing to three different families: violin (bowed strings), piano (struck strings or
percussion) and bassoon (woodwinds). The used samples are part of the RWC
Musical Instrument Sound Database. We trained one octave (C4 to B4) of two
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Fig. 3. Cross-validation framework for the evaluation of the representation stage.



exemplars from each instrument type. As test set we used the same octave from
a third exemplar from the database. For the PI method, P = 20 partials were
extracted. For the EI method, fmax was set as the frequency of the 20th partial
of the highest note present in the database, so that both methods span the same
maximum frequency range, and a frequency grid of G = 40 points was defined.

Experiment 1: compactness. The first experiment evaluates the ability
of PCA to compress the training database by measuring the explained variance:

EV (R) = 100
∑R

i λi∑K
i λi

(2)

where λi are the PCA eigenvalues, R is the reduced number of dimensions, and
K is the total number of dimensions (K = 20 for PI and K = 40 for EI). Fig.
4 shows the results. The curves show that EI is capable of achieving a higher
compression than PI for low dimensionalities (R < 14 for the violin, R < 5 for
the piano and R < 10 for the bassoon). A 95% of variance is achieved with R = 8
for the violin, R = 7 for the piano and R = 12 for the bassoon.

Experiment 2: reconstruction accuracy. To test the amplitude accuracy
of the envelopes provided by the model, the dimension-reduced representations
were projected back into the t-f domain, and compared with the original sinu-
soidal part of the signal. To that end, we measure the Relative Spectral Error
(RSE)[8]:

RSE =
1
L

L∑
l=1

√√√√∑Pl

p=1(Apl − Ãpl)2∑Pl

p=1 A2
pl

(3)

where Ãpl is the reconstructed amplitude at support point (p, l), Pl is the number
of partials at frame l and L is the total number of frames.

The results of this experiment are shown in Fig. 5. EI reduces the error in the
low-dimensionality range. The curves for PI and EI must always cross because
with PI, zero reconstruction error is achieved when all dimensions are present,
whereas in the EI case, an interpolation error is always present, even with the
full dimensionality. Interestingly, the cross points between both methods occur
at around R = 10 for all three instruments.

Experiment 3: generalization. Finally, we wish to measure the similarity
between the training and test data clouds in model space. If the sets are large
enough and representative, a higher similarity between them implies that the
model has managed to capture general features of the modeled instrument for
different pitches and instrument exemplars.

We avoid probabilistic distances that rely on the assumption of a certain
probability distribution (like the Divergence, the Bhattacharyya distance or the
Cross Likelihood Ratio), which will yield inaccurate results for data not match-
ing that distribution. Instead, we use average point-to-point distances because,
since they are solely based on point topology, they will be more reliable in the
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Fig. 4. Results from experiment 1: explained variance.
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Fig. 5. Results from experiment 2: Relative Spectral Error.
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Fig. 6. Results from experiment 3: cluster distance.

general case. In particular, the averaged minimum distance between point clouds,
normalized by the number of dimensions, was computed:

DR(ω1, ω2) =
1
R

{
1
n1

n1∑
i=1

min
yj∈ω2

{d(yi,yj)} +
1
n2

n2∑
j=1

min
yi∈ω1

{d(yi,yj)}

 . (4)

where ω1 and ω2 denote the two clusters, n1 and n2 are the number of points
in each cluster, and yi are the transformed coefficients. An important point to
note is that we are measuring distances in different spaces, each one defined by a
different set of basis, one for each preprocessing method. A distance susceptible
to scale changes (such as the Euclidean distance) will yield erroneous compar-
isons. It is necessary to use a distance that takes into account the variance of
the data in each dimension in order to appropriately weight their contributions.
These requirements are met by the point-to-point Mahalanobis distance:

dM (y0,y1) =
√

(y0 − y1)T Σ−1
Y (y0 − y1) (5)
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where ΣY is the covariance matrix of the training coefficients. The results of
this third experiment are shown in Fig. 6. In all cases, EI has managed to reduce
the distance between training and test sets in comparison to PI.

3 Prototyping stage

In model space, the projected coefficients must be grouped into a set of generic
models representing the classes. Common methods from the field of Music Infor-
mation Retrieval include Gaussian Mixture Models (GMM) and Hidden Markov
Models (HMM). Both are based on clustering the transformed coefficients into a
set of densities, either static (GMM) or linked by transition probabilities (HMM).
The exact variation of the envelope in time is either completely ignored in the
former case, or approximated as a sequence of states in the latter. However, we
wish to model the time variation of the envelope in a more accurate manner,
since it plays an equally important role as the envelope shape when character-
izing timbre. Therefore, we choose to always keep the sequence ordering of the
coefficients, and to represent them as trajectories rather than as clusters. For
each class, all training trajectories are collapsed into a single prototype curve
by interpolating all trajectories in time using the underlying time scales in or-
der to obtain the same number of points, and averaging each point across the
dimensions. Note lengths do not affect the length or the shape of the training
trajectories. Short notes and long notes share the same curve in space as long
as they have the same timbral evolution, the former having a smaller density of
points on the curve than the latter. Fig. 7 shows an example set of prototype



Representation Accuracy STD

PI 74,86 % ± 2.84%
Linear EI 94,86 % ± 2.13%
Cubic EI 94,59 % ± 2.72%
MFCC 60,37 % ± 4.10%

Table 1. Classification results: maximum averaged classification accuracy and
standard deviation (STD) using 10-fold cross-validation.

curves corresponding to a training set of 5 classes: piano, clarinet, oboe, violin
and trumpet, in the first three dimensions of the model space. This plot cor-
responds to one fold of the cross-validation experiments performed in the next
section.

4 Application to musical instrument classification

In the previous sections we have shown that the modeling is successful in cap-
turing the timbral content of individual instruments. However, for most appli-
cations, dissimilarity between different models is desired. Therefore, we wish
to evaluate the performance of this modeling approach when performing clas-
sification of solo instrumental samples. One possibility to perform classification
using the present model is to extract a common basis for the whole training set,
compute one prototype curve for each class and measure the distance between
an input curve and each prototype curve. We define the distance between two
curves as the average Euclidean distance between their points.

For the experiments, we defined a set of 5 classes (piano, clarinet, oboe,
violin and trumpet), again from the RWC database, each containing all notes
present in the database for a range of two octaves (C4 to B5), in all different
dynamics (forte, mezzoforte and piano) and normal playing style. This makes
a total of 1098 individual note files, all sampled at 44,1 kHz. For each method
and each number of dimensions, the experiments were iterated using 10-fold
cross-validation. The best classification results are given in Table 1. With PI, an
accuracy of 74, 86% was obtained. This was outperformed by around 20% when
using the EI apporach, obtaining 94, 86% for linear interpolation and 94, 59%
for cubic interpolation. As in the representation stage experiments, performance
does not significantly differ between linear and cubic interpolation.

4.1 Comparison with MFCC

The widely used MFCCs are comparable to our model inasmuch as they aim
at a compact description of spectral shape. To compare their performances, we
repeated the experiments with exactly the same set of database partitions, sub-
stituting the representation stage of Sect. 2 with the computation of MFCCs.
The highest achieved classification rate was of 60,37 % (with 13 coefficients),
i.e., around 34 % lower than obtained with EI. This shows that, although having



proved an excellent feature for describing overall spectral shape for general audio
signals, MFCCs are not appropriate for an accurate spectral envelope model us-
ing the prototype curve approach. Also, they use the Discrete Cosine Transform
(DCT) as the dimension reduction stage, which unlike PCA is suboptimal in
terms of compression.

5 Conclusions and future work

Using the Envelope Interpolation method as spectral representation improves
compression efficiency, reduces the reconstruction error, and increases the simi-
larity between test and training sets in principal component space, for a low to
moderate dimensionality. In average, all three measures are improved for 10 or
less dimensions, which already correspond to 95% of the variance contained in
the original envelope data. It also improves prototype-curve-based classification
by 20 % in comparison to using plain partial indexing and by 34 % in comparison
to using MFCCs as the features.

It follows that the interpolation error introduced by EI is compensated by the
gain in correlation in the training data. We can also conclude that f0-invariant
features play a more important role in such a PCA-based model, and thus their
frequency alignment must be favored.

In a more general classification context, it needs to be verified how the model
behaves with a note range larger than 2 octaves. Most probably, several mod-
els for each instrument will have to be defined, corresponding to its different
registers. In any case, the present results show that the interpolation approach
should be the method of choice for this and other, more demanding applications
such as transcription or source separation, where the accuracy of the spectral
shape plays the most important role.

Possibilities to refine and extend the model include: using more sophisticated
methods to compute the prototype curves (like Principal Curves), dividing the
curves into the attack, decay, sustain and release phases of the temporal envelope
and modeling the frequency information. The procedure outlined here will be
integrated as a source model in a source separation framework operating in the
frequency domain.
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