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Abstract. We present a system that can learn effective classification
models from music databases of very different characteristics, including
both single-label collections indexed by genre or artist and multilabel
databases of musical mood and instrumentation, where multiple tags can
be applied to each track. Adaptability is attained by means of automatic
feature and model selection, both embedded in the multiple-instance bi-
nary relevance learning of a Support Vector Machine. We discuss strate-
gies for compensating overfitting and unbalanced training sets.

1 Introduction

Recent developments in Music Information Retrieval technologies have followed
the trend of shifting from the classical single-label, single-criterion model of
classification towards a multi-label, multi-criteria paradigm. The musicological
difficulties of hard-assigning musical tracks to fixed categories such as genres
limit the usefulness of a system in practical use, even if it is able to reach satis-
fying performances in the laboratory for particular tasks. This is not only due to
technical challenges of the pattern recognition algorithms involved, but mainly
because of the system failing to meet users’ expectations concerning their own
understanding of the musical categories.

It should be noted that multi-criteria and multi-label are two independent
concepts. The label multiplicity (single or multiple) refers to the number of labels
the system can output per track. The criteria refer to the categories described
by the labels (genre, mood, instrumentation, etc.). A multi-criteria system can
be single- or multi-label, however the latter case is more common.

Multilabel music classification is also known as music tagging, and has only
recently started to gain interest with the advent of popular online music services
based on social networking and collaborative-filtering-based recommendation.
Tagging with multiple labels avoids the difficulty and inaccuracy of describing
a whole musical track with a single genre, mood, instrumentation or any other
possible label.

A system capable of working with different criteria needs to be adaptive, in
order to accommodate itself to databases of potentially very different number of
classes, number of audio files and qualities of annotation. Thus, the key machine



learning concepts involved are automatic feature and model selection. On the
other hand, in benefit of general applicability, it must avoid a too high modeling
accuracy on the training set, i.e., it must avoid overfitting. The most demanding
goal of a classification application is not accuracy, but generality. Using highly
complex decision functions that work well on the training set might perform
poorly when the system is subjected to cross-validation. It is therefore crucial
to find a trade-off between system adaptability and overfitting.

Only relatively recent works have addressed adaptability and multilabel ca-
pabilities of music classification systems. An example is the system proposed
in [1], where adaptability is achieved through automatic feature selection and a
Gaussian Mixture Model (GMM)-based classifier is tested in speech/music segre-
gation and genre classification tasks. In [2], multilabel classification is applied to
music and sound effect databases by using label-level GMM distributions learnt
with a hierarchical Expectation-Maximization algorithm. In [3], the Random k-
Labelsets (RAKEL) algorithm for multilabel classification is applied to music
mood detection. RAKEL has the particularity to handle the multilabel problem
all at once, instead of decomposing the problem into a set of sub-problems. The
first MIREX contest for music tagging took place in the 2008 edition [4].

We present a system that takes into account the demands of adaptability and
subject it to extensive evaluation with two single-label databases (music genre
and artist detection) and two multilabel databases (mood and instrumentation).
Classification is based on Support Vector Machines (SVM). Our proposal to at-
tain adaptability involves embedding feature and model selection in the multiple-
instance binary learning needed for multiclass SVMs. Feature selection is based
on the Inertia Ratio Maximization using Feature Space Projection (IRMFSP)
algorithm [5]. Model selection involves searching for optimal SVM cost and ker-
nel parameters by performing sub-cross-validation of the training database at
each binary iteration, for which we propose to use a criterion function that takes
into account overfitting and unbalanced sets. The handling of unbalanced sets
is crucial for tagging applications, and for single-label applications with a high
number of classes, as will be discussed more in detail.

An important characteristic of the proposed system is the binarization1 not
only of the model training (which is needed for SVM anyway), but also of fea-
ture and model selection. Because this dramatically increases the overall model
complexity (there are different features and model parameters for each binary
instance), binarization of all learning stages is prone to overfitting. Thus, bina-
rization should be accompanied by measures to mitigate overfitting in order for
the system to gain in classification performance. Computational requirements
also increase, but the separation in binary instances allows easy parallelization.

In the following section we explain in detail the different components of the
system. Sect. 3 briefly introduces the four music databases used in the evaluation
experiments detailed in Sect. 5, and Sect. 4 emphasizes on the two different

1 In this context, binarization is the conversion of a multiclass problem into a set of
2-class sub-problems.
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Fig. 1. Overview of the system in training.

evaluation approaches that are needed for the single-label and the multilabel
cases.

2 System modules

Overviews of the system in training and classification modes are shown in Fig.
1 and Fig. 2, respectively. Note that the only modules that are specific to either
single-label or multilabel classification are the decision fusion modules in the
classification subsystem. All the others are valid for both annotation modes.

2.1 Feature extraction

A high adaptability calls for the extraction of a large number of audio features
(most of them described in detail in [6]), that are to be subsequently selected
automatically. All features are extracted on a short-term basis, and include the
following:

– Basic spectral features. Including spectral centroid, rolloff, flux, slope,
skewness, kurtosis, etc.

– Basic temporal features. Autocorrelation and zero-crossings rate.
– Perceptual features. Loudness, specific loudness and a collection of spec-

tral shape features (centroid, rolloff, flux, etc.) applied on a mel-warped
spectrogram.
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Fig. 2. Overview of the system in classification.

– Harmonic features. They measure the level of presence of sinusoidal com-
ponents, as well as their overall spectral shape. They include noisiness, in-
harmonicity and harmonic spectral deviation.

– MFCC. 13 Mel Cepstral Coefficients are extracted, together with their first
(∆) and second (∆∆) derivatives.

– Spectral Flatness Measure and Spectral Crest Measure. They mea-
sure the flatness of the spectral envelope, and thus its noisiness.

– Chroma coefficients. Indicate the harmonic content by measuring the
spectral energy in 12 frequency bands corresponding to the notes of the
chromatic equal tempered scale.

An extracted short-time feature vector has a dimensionality of 280. To cap-
ture its dynamic behaviour, and to heavily reduce computational and storage
requirements, a subsequent stage of temporal modeling is applied. In particu-
lar, the loudness-weighted mean and standard deviation of the features across a
certain texture window (whose length is in the range of seconds) are extracted.
This makes a total final dimensionality of 480.

After extraction and temporal modeling, the axes of the feature space are
centered and normalized by Inter-Quartile Range (IQR). The normalization pa-



rameters are extracted from the training set and used afterwards on the test
set.

2.2 Binarization

The conversion of a multiclass2 problem into a set of 2-class sub-problems ap-
pears naturally in the context of SVM-based classifiers. Most multiclass SVM
implementations operate by a series of binary repartitions of the database prior
to actual binary SVM training, followed by some voting or decision scheme.
Usually, the database repartition is embedded into the SVM algorithm and thus
other learning stages such as feature extraction and model selection are kept
out of the binarization and performed in a multiclass context. In such a situa-
tion, the found optimal features and model parameters are the same for all the
subsequent pairwise SVM classifications.

We use here an alternative approach consisting in including both feature and
model selection to each one of the binary repartitions. This has the potential of
improving classification performance if the optimal pairwise separation bound-
aries between classes are highly dissimilar to each other. For example, we might
need a completely different set of features, and a different degree of nonlinearity
in the kernel mapping, when separating jazz from blues, than for separating jazz
from hard rock. A higher boundary nonlinearity will probably be needed in the
first case.

We use the 1-vs.-all approach to binarization, in which a multiclass problem
of C classes is subdivided as a set of C binary sub-problems. In the binary sub-
problems, the positive class is the class under consideration, and the negative
class is made up of the rest of the training database. Another popular approach
is 1-vs.-1 binarization, in which the number of subproblems is C(C − 1)/2. In
the case of traditional SVM learning, 1-vs.-all and 1-vs.-1 have been reported
as having similar classification and computational performances [7] (in the latter
case, the higher number of sub-problems is compensated by the lower number
of feature vectors in the negative classes). In our case, however, the 1-vs.-1 case
would be much more computationally demanding, since also feature and model
selection are run in each binary instance, and their performance is far less related
to the number of feature vectors in the corresponding classes.

2.3 Binary feature and model selection

Feature selection is based on the IRMFSP algorithm [5], which maximizes the
Fisher discriminant (overall class separability) with an additional orthogonality
constraint. A subsequent dimensionality reduction step based on Linear Discrim-
inant Analysis (LDA) was tested in preliminary experiments, but was confirmed
to be inappropriate in a binary context, since it projects all the selected features
into a single dimension, a too coarse simplification.
2 Multiclass (more than 2 classes in the training set) should not be confused with

multilabel (more than 1 class can be assigned assigned to one track).



The subsequent model selection stage involves searching for the optimal SVM
parameters. Here, C-SVMs (Slack variable-SVMs) are used, since they attain a
higher robustness against overfitting by allowing classification errors near the
separation margin while learning. The cost of these errors is controlled by the
factor c, which is one of the two parameters that need to be optimized. The
other is the factor γ that controls the lobe width of the function used here as
the kernel: Gaussian Radial Basis Function (G-RBF).

The most usual way of performing this parameter optimization is to perform
a cross-validated exhaustive search in the (c, γ) grid, with classification accuracy
as criterion function. In each fold of the validation, a parameter pair is selected
and an SVM is trained and tested. The parameter pair corresponding to the
highest obtained accuracy is selected. Note that the cross-validation partitions
are actually performed on the training set, not in the whole evaluation database
(which would amount to learning from the test set). To avoid confusion, we will
call it sub-cross-validation (sCV).

Using accuracy as criterion can be however inefficient in binary sub-problems
arising from a 1-vs.-all binarization, since the two involved classes will almost
certainly be unbalanced in the number of feature vectors (the negative class will
contain many more vectors than the positive class). Thus, a high overall accuracy
will be obtained even if very few (or even no) true positives are detected, and
the selected parameters will be unoptimal in the final evaluation tests. In such
cases, a more appropriate alternative is to use the F-Measure (FMSR) of the
positive class3, which is the harmonic mean of the recall (RCL) and precision
(PRC) of that class:

RCL =
TP

TP + TN
, PRC =

TP
TP + FP

, FMSR =
2 · PRC · RCL
PRC + RCL

, (1)

where TP are the true positives, TN are the true negatives, FP are the false
positives and FN are the false negatives.

In addition to the F-Measure, we include an additional term in the objective
function, which measures the proportion of support vectors found. The number
of support vectors is a good indication of the degree of overfitting. The support
vectors are the training vectors that define the optimal separation boundary,
as found by the SVM training optimization. Thus, proportionally fewer support
vectors imply a less complex decision function, and therefore a (likely) more
generalizable model. The final parameter optimization problem based on the
proposed function takes the form:

(c∗n, γ
∗
n) = argmax

cni,γnj

{
FMSR(cni, γnj)

(
1− S(cni, γnj)

Vn

)}
, (2)

where S is the number of support vectors found by the algorithm, Vn is the total
number of training feature vectors in the current binary sub-problem, and n =
3 Note that, in a binary problem, “F-Measure of the positive class” is synonymous with

just “F-Measure”. This is not the case in multiclass problems, where F-Measure, as
well as recall and precision, are always defined in relation to a specific class.



1, . . . , N is the binary sub-problem index. It should be noted that the size of the
grid defined by (cni, γnj) has a huge impact on computational time. Therefore,
its resolution is automatically chosen based on the size of the training database.
On the other hand, grids with too high a resolution attain lower performance
due to overfitting.

2.4 C-SVM and probability estimates

After finding the optimal features and (c∗n, γ
∗
n) parameters, the n-th C-SVM4

with G-RBF as kernel is re-trained using the whole training set. The formulation
of the training for the n-th binary instance is thus the following:

min
wn,ξn,bn

J(wn, ξn) =
1
2
‖wn‖2 + c∗n

Vn∑
i=1

ξni, (3)

subject to (wT
nφ(xi) + bn) ≥ 1− ξni, if yi = n,

(wT
nφ(xi) + bn) ≤ −1 + ξni, if yi 6= n,

and ξni ≥ 0, ∀i, n,

where wn is the normal vector defining the n-th separating hyperplane, ξni
are the slack variables associated to the n-th sub-problem, φ(·) is the mapping
function associated to the kernel and bn are the hyperplane offsets.

In the classification phase, after filtering out the selected descriptors, classi-
fication on the m-th trained SVM is done based on a decision function of the
form wT

nφ(xi) + bn. For classification and retrieval applications, a more conve-
nient output is the probability of a classified vector to belong to the different
classes. This allows later probabilistic temporal integration and computation of
class or tag relevances. Here, probability estimation is based on the pairwise
coupling method proposed by Wu et al. [9].

2.5 Decision fusion for single-label tasks

In the single-label case, the single most probable class for the whole music track
has to be selected out of the set of binary classifications, and also out of the set
of classifications corresponding to the temporal sequence of the texture windows
of that piece. Decision fusion is thus implemented in two phases: first, the most
probable of the N binary positive classes is selected for each texture window, fol-
lowed by a majority voting of all the detected classes for all the texture windows
of the track (this is labeled as late feature integration in Fig. 2).

4 We use the libsvm library [8] as SVM implementation.



2.6 Decision fusion for multilabel tasks

Decision fusion has a different goal in multilabel tasks. Instead of choosing a
winning class per track, the decision involves selecting a subset of L < N labels
that are judged as relevant to the track. Note that the set of output labels can
vary in size for different tracks, and might even be empty if no relevant label is
found. This is in contrast to the single-label scenario, in which a class has to be
always assigned (and even if a vector of output probabilities is given in a single-
label problem, its size is always fixed and equal to the total number of classes).
Thus, the size of the output label set is an additional parameter exclusive to
multilabel tasks, that needs to be carefully optimized.

The sequence of multiclass and temporal decision fusion must now be in-
verted: first, the probabilities of all positive classes across the sequence of all
texture windows for a given track are first averaged (relevance aggregation),
followed by the filtering of the most relevant tags by means of the relevance
threshold (relevance filtering). An adequate relevance threshold is crucial for a
satisfactory balance between label-based precision and recall in evaluation. The
threshold has been optimized by cross-validation on the whole system.

3 Databases

Four different annotated music databases have been prepared for the evaluations.
They follow different annotation criteria and have very different class distribu-
tions and populations.

3.1 Single-label databases

– Genre. The publicly available ISMIR 2004 music genre database5 has been
used. It contains 1422 copyright-free mp3 tracks (128 kbps, 44.1 kHz) orga-
nized into 6 genres (see Table 1). Approximately half of the files are sepa-
rated as a “training database” and the rest as a “development database”,
and several algorithms in the literature have been evaluated by testing the
development database against the training database. In order to allow a di-
rect comparison, we chose to follow the same evaluation method, rather than
using k-fold cross-validation.

– Artist. A database of 3150 MP3 clips of 30 seconds extracted around the
center of each song (128 kbps, 32 kHz) has been compiled, containing tracks
from 105 pop/rock artists (30 tracks per artist). This database has been
designed to resemble the (not publicly available) MIREX 2008 [4] artist
detection database in size and proportions, but contains different artists and
audio files. The artist labels originate from the ID3 metadata of the MP3
files.

5 http://ismir2004.ismir.net/genre contest/index.htm



Database Genre Artist
#files 1422 3150
#classes 6 105

#files per class

classical 604 30 files per artist
electronic 229 (mostly pop/rock)
jazz/blues 52
metal/punk 90
rock/pop 203
world 244

Annotation Metadata Metadata
Evaluation 1-fold cross-database 3-fold cross-validation

Table 1. Single-label databases used for evaluation.

3.2 Multilabel databases

The database characteristics and classes for the multilabel case are shown in
Table 2. The figure contains an additional measure: the label cardinality, i.e., the
average number of annotated labels per track.

– Mood. 193 mp3 files (128 kbps, 32 kHz) have been manually annotated
with labels reflecting mood or emotion characteristics. Multiple labels per
file are allowed (but not required). Each file has been annotated 3 times in
order to allow an assessment of label relevance by measuring the agreement
between annotators. From a bigger initial set of labels, only those labels for
which 2 of the three annotators agreed, and that appear in at least 6 tracks,
were kept. Since this annotation process is much more costly than in the
single-label case, the size of the database is smaller.

– Instrumentation. 252 mp3 files (128 kbps, 32 kHz) have been manually
annotated with a variety of criteria related to instrumentation (lead vocal
type, drum kit type, production style, etc.). Again, 3 annotations per file
were done, and only the labels with an agreement of 2 or 3 were kept. Note
that the label cardinality is twice as high as in the mood case, and that the
classes are better populated.

4 Evaluation measures

It is possible to define a unified evaluation framework valid both for single-lable
and multilabel scenarios by reinterpreting in each case the meaning of TP, TN,
FP and FN, or even more easily, by reinterpreting the meaning of the answer
set A and the relevant set R. In terms of general Information Retrieval, the
answer set is the set containing all items output by the algorithm in response
to a certain query, and the relevant set contains all items annotated as being
relevant to a particular query (i.e., the ground truth). The class-wise positive
and negative scores are then defined for class n as:

TPn = |Rn ∩ An| (4)



Database Mood Instrumentation
#files 193 252
#labels 15 19
label cardinality 2.06 3.99

#files per label

angry/aggressive 13 background vocals 64
bizarre/weird 6 drum kit: techno 22
calming/soothing 50 drum kit: electronic 80’s 13
cheerful/festive 46 drum kit: heavy rock/metal 21
contrasted 11 drum kit: jazz/country/soul 51
enchanting/magical 6 drum kit: light pop/rock 97
grandiloquent 13 drum kit: urban / R’n’B / rap 24
laid-back/mellow 20 guitar solo 27
mechanical/robotic 9 piece based on distorted guitars 43
playful 40 simple presence of distorted guitars 17
positive/happy 52 instrumentation archetype: electronic 32
powerful/strong 49 instrumentation archetype: vocal and acc. 10
romantic/passionate 34 instrumentation archetype: pop/rock 164
sad/melancholic/doleful 9 lead vocal part 154
sophisticated/elegant 41 no melodic reference 14

not a lead vocal part 48
production: heavily produced in studio 50
production: produced with acoustic instruments 93
production: transparent 60

Annotation 3 manual annotations per file 3 manual annotations per file
Evaluation 3-fold cross-validation 3-fold cross-validation

Table 2. Multilabel databases used for evaluation.

TNn = |S − (Rn ∪ An)| (5)

FPn = |An − (Rn ∩ An)| (6)

FNn = |Rn − (Rn ∩ An)|, (7)

where S is the set of all items, | · | denotes the number of elements in a set
and the − denotes set difference. There is one interpretation of the sets for the
single-label case, and two possible interpretations for the multilabel case, which
are the following:

– Single-label: S is the set of all tracks in the test partition of the database,
An is the set of test tracks assigned by the algorithm to class n, and Rn is
the set of test tracks annotated in the ground truth as belonging to class n.

– Multilabel label-based measures: S is the set of all tracks in the test
partition of the database, An is the set of test tracks assigned by the algo-
rithm to label n, and Rn is the set of test tracks which include label n in
the ground truth annotation.

– Multilabel track-based measures: S is the set of all labels in the ground
truth (the dictionary), An is the set of labels assigned by the algorithm to
track t, and Rn is the set of all labels annotated for track t in the ground
truth.

Multilabel track-based measures can be misleading about the generalized
performance of the system. They can lead to artificially good results if a system



is good at predicting a few well-populated labels (such as “pop/rock” instrumen-
tation) and bad at predicting rare or more specific labels (such as “electronic
80’s drum kit”) [2]. For a more generalized performance indication that ensures
that even the rare labels are well classified, label-based measures should be used,
as we did in the experiments outlined in the next section.

Once the positive/negative scores values are computed, the class-wise evalu-
ation measures of RCL, PRC and FMSR are computed as in Eq. 1. In addition,
in the single-label case a popular measure is the accuracy (ACC), which is sim-
ply the percentage of tracks correctly classified. In spite of its popularity, this
measure can be misleading with unbalanced datasets, as has been argued be-
fore. The F-Measure should be considered as the most robust and informative
measure of performance in both single- and multilabel cases.

5 Experimental results

The goal of the experiments was not only to test the performance of the system
in the individual tasks, but also its adaptability, without manual changes, be-
tween databases of very different characteristics. In this respect, we emphasize
that the parameters that are not automatically optimized by the system (sound
analysis parameters, number of selected features, multilabel relevance threshold,
etc.) remained unchanged between all experiment runs with all four single- and
multilabel databases. For each evaluation configuration, the system was launched
with each one of the databases with no manual parameter tuning or changing
between runs.

For the short-term feature extraction6, a Blackman window of 60ms length
and a hop size of 20ms was used. For the single-label experiments, two different
temporal modeling methods were tested: the first (“file”) takes the whole track
length as a single texture window, and thus each track is represented by a single
feature vector. In the second mode (“tw”), a texture window of a fixed length
of 4s and a hop size of 2s was set. The file mode is much more computationally
efficient, but it might fail to capture some degree of dynamic feature behaviour.
For reasons of computational demands, multi-label databases were only tested in
file mode. After assessing the performance in preliminary tests, a fixed number
of 40 selected features was set for all final experiments.

The results for the single-label experiments are shown in Table 3, and for
the multilabel experiments in Table 4. All measures are averaged across classes
and, in the artist, mood and instrumentation cases, across the 3 folds of the
cross-validation. The “multiclass” configuration denotes the usual approach of
performing feature and model selection on the multiclass dataset, outside of
the binarization. Thus, the features selected by the IRMFSP algorithm and the
parameters selected by multiclass sCV (with accuracy as a criterion function)
are common for all n SVMs. Note that this does not apply to the multilabel
case, in which a binarization of the whole training has to be carried out anyway.

6 All MP3 files were decoded into WAV before processing.



SINGLE-LABEL
temp. Genre Artist

Configuration mod. ACC RCL PRC FMSR ACC RCL PRC FMSR
Multiclass file 83.95 78.84 80.31 79.08 28.44 28.44 34.71 27.12
BFS - sCV(acc) file 84.91 79.34 80.98 79.95 45.71 45.71 47.98 45.04
BFS - sCV(f+sv) file 85.32 79.47 81.32 80.15 45.40 45.40 47.58 44.60
Multiclass tw 87.11 81.26 85.20 83.03 41.59 41.59 40.76 39.63
BFS - sCV(acc) tw 87.24 81.79 86.38 83.79 44.35 44.35 46.94 43.67
BFS - sCV(f+sv) tw 88.07 82.80 86.95 84.62 43.33 43.33 45.90 42.53

Table 3. Results for the single-label databases. All measures are averaged across classes
and (in the case of the artist database) across cross-validation folds.

MULTILABEL
temp. Mood Instrumentation

Configuration mod. RCL PRC FMSR RCL PRC FMSR
BFS - sCV(acc) file 78.59 22.01 32.03 85.52 34.24 46.28
BFS - sCV(f+sv) file 59.85 33.61 40.23 74.59 42.38 52.32

Table 4. Results for the multilabel databases. All measures are label-based and aver-
aged across labels and across cross-validation folds.

The row indicated as “BFS-sCV(acc)” (Binary Feature Selection (BFS) and
binary sub-cross-validation (sCV) based on accuracy (acc)) corresponds to the
full binarization of IRMFSP feature selection and sCV model selection. Since the
criterion function (acc) is still the same than in the multiclass case, the results on
this row show the independent effect of binarization. The performace has been
improved in all cases (in terms of F-Measure), both with file and texture-window
temporal modeling. The improvement is slight in the genre case (6 classes), and
more important in the artist case (105 classes). This shows that using the same
parameters for a large set of decision boundaries is too broad a simplification,
and that binarization is convenient in such cases.

The “BFS-sCV(f+sv)” denotes again full binarization, but with the accuracy
criterion function replaced by the function proposed in Eq. 2, which takes into
account unbalancing and overfitting. The use of this function improves the F-
Measure in all but the artist database. Note in particular that the improved
performance for the multilabel databases is due to a better balance between
precision and recall. A possible reason why the performance is similar but not
better with the 105-class artist database might be the extreme unbalancing of
the binary sub-problems, which would need further compensation. A possibility
we will investigate is to learn two different cost coefficients in each sub-problem,
one for the positive class (c∗+n) and one for the negative class (c∗−n).

The genre results are directly comparable to previous approaches, since they
are based on a very similar database. The class-averaged recall reported in [1]
was of 78.7% with the same training and development databases and the best
recall obtained in the ISMIR 2004 genre contest was of 78.78%, in this case
with the development database replaced by a non-public evaluation database



of the same characteristics and proportions. In comparison, the present system
obtained a mean recall of 82.80%.

The system was also submitted for participation in the MIREX 2009 classi-
fication and tagging tasks. For details on the evaluation results, see [10].

6 Conclusions

Adaptability of the presented system has been achieved through the use of au-
tomatic feature selection from a large set of features, through the use of SVM
cost and kernel parameter selection by sub-cross-validation, and by allowing
both single-label and multilabel modes of operation. General performance can
be significantly improved by binarizing all stages of the training process, not
only SVM training (as is usually the case), but also of feature and model selec-
tion. Performance can be further optimized by using a model selection criteron
function that takes into account training set unbalancing and overfitting. The
best performances obtained with the same configuration (full binarization with
“f+sv” criterion function) were of 88.07% accuracy and 84.62% F-measure for a
6-class single-label genre database, of 45.40% accuracy and 44.60% F-Measure
for a 105-class single-label artist database, of 40.23% label-based F-Measure for
a 15-label multilabel mood database, and of 52.32% label-based F-Measure for
a 19-label multilabel and multi-criteria instrumentation database.

A possibility towards further adaptability would be to automatically choose
one of the configurations shown in Tables 3 and 4 depending on the class popu-
lation and database size. But for a robust choice, this will probably need further
extensive testing, and the use of bigger databases, especially in the multilabel
case. Another future direction of research will be to explore more informative
temporal modeling methods.
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