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ABSTRACT

A system for the automatic classification of audio signals accord-
ing to audio category is presented. The signals are recognized as
speech, background noise and one of 13 musical genres. A large
number of audio features are evaluated for their suitability in such
a classification task, including well-known physical and percep-
tual features, audio descriptors defined in the MPEG-7 standard,
as well as new features proposed in this work. These are selected
with regard to their ability to distinguish between a given set of au-
dio types and to their robustness to noise and bandwidth changes.
In contrast to previous systems, the feature selection and the clas-
sification process itself are carried out in a hierarchical way. This
is motivated by the numerous advantages of such a tree-like struc-
ture, which include easy expansion capabilities, flexibility in the
design of genre-dependent features and the ability to reduce the
probability of costly errors. The resulting application is evaluated
with respect to classification accuracy and computational costs.

1. INTRODUCTION

In a musical context, audio data is organized mostly according
to the musical genre. In recent years, many different approaches
have been proposed to perform genre extraction from raw audio
data, ranging from music/speech discriminators [1, 2] to systems
based on elaborate musical and non-musical taxonomies [3, 4]. All
of these systems rely on pattern recognition techniques, in which
each signal is represented by a set of features that are used to train
a statistical or neural classifier.

Although many combinations of features and classifiers have
been evaluated in these works, little attention has been paid to the
following issues:

• Genre dependency of the features:Clearly, some features
will be more suitable than others when classifying into a
given set of subgenres. For example, features describing
beat strength are more likely to perform better in separating
classical from pop music than in classifying into chamber
music subgenres. This suggests a hierarchical classification
scheme.

• Problems of dimensionality:In pattern recognition appli-
cations, adding new features (i.e., adding new dimensions
in the feature space) does not necessarily result in a higher
classification rate, especially when few training samples are
available for each class. Reducing the number of features
allows to reduce computational costs while maintaining a
similar classification rate. In some cases, the classification
rate can even benefit from the reduction in dimensionality.

• Inappropriate taxonomies:Many proposed taxonomies are
too simple or musicologically inconsistent.

2. AUDIO TAXONOMY

A special effort was made in defining the audio taxonomy to be
implemented. The class structure was chosen to be simple enough
to allow classification with feasible features, complete enough to
allow an acceptable classification of as much input signal types as
possible, and musicologically consistent. The obtained taxonomy
contains a total number of 17 classes (3 speech classes, 13 music
classes and 1 background noise class) and is shown in Figure 1.

3. FEATURE EXTRACTION

The system presented here is intended to operate on audio sig-
nals stored as audio files. Furthermore, the files are supposed to
be homogeneous, i.e., to contain only one type of audio. Thus,
a single class decision is met for each file. For each underlying
frame-based feature, the four following file-basedsubfeaturesare
computed: mean (M), standard deviation (S), mean of the deriva-
tive (DM) and standard deviation of the derivative (DS) over all
analysis frames in the files.

3.1. Timbral features

The following well-known features [1, 3] describing timbral con-
tent have been implemented and evaluated :

• Zero crossings:An approximate measure of noisiness.

• Centroid: Models the soundsharpness.

• Rolloff: A measure of spectral shape.

• Flux: A measure of the spectral rate of change.

• Mel Frequency Cepstral Coefficients (MFCC):MFCCs are
a compact representation of the spectrum of an audio signal
that takes into account the nonlinear human perception of
pitch, as described by themel scale.

3.2. MPEG-7 features

The new MPEG-7 standard [5] deals with the content-based de-
scription of raw data. In the context of MPEG-7, a feature is
called a Low-Level Descriptor (LLD). In the present work, four
audio LLDs have been selected for the implementation and evalu-
ation in the classification task. Only descriptors that are applica-
ble to any audio type have been taken into consideration. There
are other LLDs intended for single-voiced, quasi-periodic audio
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Figure 1:Audio taxonomy.

segments, which have not been used here, since they would yield
unpredictable results with general, complex signals. The imple-
mented descriptors are:

• Audio Spectrum Centroid:A perceptually adapted defini-
tion of the centroid.

• Audio Spectrum Spread:It describes how the spectrum is
concentrated around the centroid.

• Audio Spectrum Flatness:A measure of the deviation of
the spectral form from that of a flat spectrum.

• Harmonic Ratio:A measure of the proportion of harmonic
components within the spectrum. It is defined as the maxi-
mum value of the autocorrelation of each frame.

• Modified Harmonic Ratio:The definition of the harmonic
ratio provided within the standard was modified in such a
way that the first peak of the autocorrelation was skipped
when searching for the maximum. This resulted in a larger
value range and has proven to work better than the standard
version in the classification task.

3.3. Rhythm features

Instead of just measuring the tempo, it is more interesting for clas-
sification purposes to extract information about rhythmical struc-
ture and beat strength. Abeat histogramis a curve describing beat
strength as a function of a range of tempo values, and allows the
extraction of the mentioned properties. Peaks on the histogram
correspond to the main beat and other subbeats. Several methods
have been proposed for its computation [3, 6]. In this work, an
implementation similar to the one presented in [6] has been used.
All the rhythm features were extracted from the beat histograms,
as follows:

• Beat strength: To obtain an overall measure of beat
strength, the following statistical measures of the histogram
have been evaluated: mean, standard deviation, mean of the
derivative, standard deviation of the derivative, skewness,
kurtosis and entropy. These measures are computed in the
“beat domain”, and should not be confused with the time-
based statistical subfeatures mentioned earlier.

• Rhythmic regularity:A beat histogram in which the peaks
are spaced periodically denotes high rhythmic regularity.
This can be measured by the normalized autocorrelation
function of the beat histogram. It will contain clear peaks
for rhythmically regular music examples, and will be the
more linear the weaker the regularity is.

3.4. Other features

• Root Mean Square:RMS energy of each signal frame.

• Time envelope:maxima of each frame’s absolute amplitude.

• Low energy rate:Percentage of frames within a file that
have an RMS energy lower than the mean RMS energy
across that file.

• Loudness:A basic exponential model of loudness of the
form L = E0.23 is used, whereE is the energy of the
current frame. This model has proven to be highly effective
in spite of its simplicity.

• Central moments:The third and fourth order central mo-
ments of the time-domain audio signal, i.e., itsskewness
and itskurtosisare evaluated here as possible audio features.

• Predictivity ratio: ratio of the energy of the linearly pre-
dicted signal to the energy of the original signal.

4. FEATURE SELECTION

Altogether, 20 frame-based features, plus one file-based feature
(low energy rate) and 9 beat-histogram-based features have been
evaluated. Furthermore, the 4 subfeatures, which are applicable
to all of the 20 frame-based features, make a total number of 90
different available features to implement the classification system.
The so-calledcurse of dimensionalityis a well-known phenomenon
that appears in many pattern recognition applications. It implies
that it is advantageous to reduce the number of features in order to
reduce computational costs while keeping similar levels of perfor-
mance, and in some cases even to improve the classification rate.
In general, a well-designed feature should be invariant to irrele-
vant transformations of the signal, it should have good discrimina-
tive power between classes, and it should be uncorrelated to other
features.
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Best features Worst features

1. Low energy rate 90. 1st MFCC / DM
2. Beat histogram entropy 89. Audio Spectrum Centroid / M
3. Root mean square / DS 88. Kurtosis / DM

Table 1:Results of the noise test. 3 features most robust (left) and
most susceptible to the addition of white noise.

Best features Worst features

1. 2nd MFCC / DS 90. Predictivity ratio / S
2. 1st MFCC / DS 89. Predictivity ratio / M
3. 5th MFCC / DS 88. Predictivity ratio / DM

Table 2:Results of the bandwidth test. 3 features most robust (left)
and most susceptible to lowpass filtering.

Features were selected in a completely systematical way. We
proceed in two steps: the first step corresponds to the above cri-
terium of invariancy, the second to the criteria of discriminative
power and uncorrelation.

4.1. Tests on Robustness to Irrelevancies

Noise content and signal bandwidth are regarded here as irrele-
vant, since they should not influence the classification. Discarding
the features that are more susceptible to moderate noise and band-
width changes allows to ensure similar classification rates for a
wide range of audio qualities.

In order to test the features for robustness against the addi-
tion of noise, four representative training samples belonging to
the speech, classical music, popular music, and background noise
classes were chosen. Each example was normalized and mixed
with white gaussian noise of -25 dB RMS power and subjected
to file-based feature extraction. The resulting features of the four
noisy signals were compared with the ones extracted from the orig-
inal signals. The variations were averaged across the four samples.
Table 1 shows the 3 features that were least susceptible to noise (3
best features), and the 3 most susceptible features (3 worst fea-
tures). The 20 worst features in the ranking were discarded.

To test robustness to bandwidth changes, a low-pass filtering
with a cut-off frequency of 11025 Hz was applied to the same
four examples and their extracted features were compared with the
original ones in the same way. The 20 worst features were also
discarded. Table 2 shows the selected results.

Some general conclusions can be drawn from the results of the
tests. The M and DM subfeatures are in most cases highly sensitive
to noise and to lowpass filtering. The DS subfeatures are especially
robust to noisy changes in the signal. MFCCs are highly robust to
lowpass filtering, except for their DM variants. Predictivity ratio
features are extremely sensitive to lowpass filtering. As a result of
both tests, a total number of 32 features (the ones that appear at
least once in both bottom-ranking lists) were discarded.

4.2. Feature subset selection

The remaining 58 features were subjected to a feature selection
algorithm that selects a subset of features containing the highest
class discriminating power. A vectorialsequential feed forward
algorithm was used, which searches for a feature subset that maxi-
mizes a measure of class separability based on the scatter matrices
of the training set [7].

speech/music/background classical/non-classical

1. 2nd MFCC / S 1. Zero Crossings / DS
2. 4th MFCC / DS 2. Loudness / M
3. Rhythmic regularity 3. Rhythmic regularity

Table 3:Results of the feature subset selection. 3 best features for
the speech/music/background and classical/non-classical splits.

The algorithm yields a list in which the 58 features are ordered
according to their ability to separate classes. It also ensures that
features selected consecutively are as uncorrelated as possible.

In this work, a hierarchical classification approach has been
used. Rather than making a single decision to classify into one
of the 17 classes (direct approach), the hierarchical approach con-
sists of successive classification decisions with a number of classes
ranging from 2 to 4, with the hierarchy corresponding to the audio
taxonomy tree depicted in Figure 1. This has a parallel approach in
the context of feature selection. Instead of using the whole train-
ing database to obtain a single list of selected features, a genre-
dependent feature selection was used, in which only the training
samples belonging to the current branch in the classification tree
are used to evaluate the separability of the current 2, 3 or 4 classes.

As a result, a set of 9 feature lists was obtained, one for each
split in the tree. Each list shows which features are most appro-
priate for distinguishing between a given set of music or audio
subgenres. As an example, Table 3 shows the 3 best features for
the speech/music/background and classical/non-classical splits.

The following general conclusions could be drawn from the
results: The DM is not an effective subfeature for classification.
This can be explained by the fact that the mean of the derivative
is very likely to take values close to zero. The proposed rhythmic
regularity feature has excellent separating performance. It belongs
to the top-3 of the lists in all cases except for the speech and the
classical subsplits. The zero crossings / DS feature is an excellent
separator. It tops the list in 4 occasions: classical/non-classical,
and the 3 classical subsplits.

5. CLASSIFICATION

A 3-component Gaussian Mixture Model was used as classifier.
At a number of around 20 features, performance stopped growing,
and in some evaluation experiments it even decreased. For these
reasons, the number of features was fixed at 20. That is, at each
classification step, the system extracts the 20 best features from
the signal, as indicated by the feature selection list corresponding
to the current tree split.

6. EVALUATION

50 audio examples were collected for each of the 17 classes, re-
sulting in an 850 file database. Each sample is approximately 30
seconds long, resulting in over 7 hours of audio.

The evaluation was carried out using astratified 10-fold cross-
validation. Table 4 shows the percentages of correct classifications
(mean plus standard deviation across the cross-validation experi-
ments) for the hierarchical approach and for each of the tree splits,
as well as an all-class classification rate which takes into account
all 17 classes. Theaccumulative performanceis the percentage
of samples of the test set correctly classified. Theindependent
performanceis the percentage of samples correctly classified at
level i that have been correctly classified at leveli + 1. Figure 2
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Split Accumulative
performance

Independent
Performance

speech/music/background 94.59± 1.77 94.59± 1.77
male/female/speech+background 76.67± 8.46 82.31± 8.63

classical/non-classical 91.08± 3.68 96.08± 2.02
chamber music/orchestral music 74.29± 7.25 81.52± 7.88

rock/pop/jazz 63.67± 6.17 70.33± 8.65
chamber subgenres 42.50±12.08 54.67±13.92
orchestral subgenres 52.67±10.63 75.21±11.83
hard rock/soft rock 55.00±16.50 79.52±20.18

pop subgenres 62.00± 9.96 76.15± 9.55
All classes 58.71± 2.85

Table 4:Classification performance using the hierarchical approach.

Figure 2:Confusion matrix. Shaded boxes correspond to the con-
secutive splits in the hierarchy. For the class codes, see Figure 1.

shows the corresponding confusion matrix. Numbers indicate the
percentages of test samples belonging to each actual class. The
evaluation was repeated for the direct approach. The results are
shown on Table 5.

7. CONCLUSIONS

As can be seen, the classification rates are very similar for both di-
rect and hierarchical approaches. Considering that the difference
in performance is small, it has been opted for the hierarchical ap-
proach for the final implementation of the system, since it features
the following additional advantages [8]:

• It allows the errors to be more acceptable than in the case
of a direct classification. For example, it is more acceptable
to wrongly classify a symphonic music sample as orches-
tral music with soloist, than as Hip-Hop. Dividing the de-
cision in subdecisions makes the errors concentrate within
the given subgenre.

• A hierarchical approach takes into consideration the class
dependency of the features.

• It closely reflects the underlying audio taxonomy, thus al-
lowing to evaluate the separability of commonly used gen-
res and their suitability for automatic classification.

Split Accumulative
performance

Independent
Performance

speech/music/background 96.35± 1.70 96.35± 1.70
male/female/speech+background 76.67± 9.03 81.00± 9.19

classical/non-classical 94.31± 3.48 96.67± 2.45
chamber music/orchestral music 75.43± 7.15 78.06± 6.81

rock/pop/jazz 65.33± 5.49 71.83± 9.38
chamber subgenres 50.50± 9.26 63.05±13.24
orchestral subgenres 52.00±15.65 75.86±18.26
hard rock/soft rock 59.00±19.69 78.91±21.09

pop subgenres 58.67±16.87 71.57±16.04
All classes 59.76± 5.23

Table 5:Classification performance using the direct approach.

• It provides the framework for the future design of more so-
phisticated genre-dependent features.

• It makes future expansions of the taxonomy easier. Only
the genre branch to which a new class is added should be
modified with respect to feature selection and training, the
rest of the models remaining unchanged.

The classification rates differ substantially across levels of the tree,
showing the different grades of difficulty in separating each corre-
sponding set of classes. The best independent performances were
achieved at the highest levels in the tree, for example achieving
94.59% accuracy in differentiating between speech, background
and music, 96.08% in separating classical from non-classical mu-
sic and 81,52% in separating chamber music from orchestral music.

In contrast, the main difficulties arise in the most specific gen-
res at the lowest levels of the tree, especially in the case of the
four chamber music subgenres, where the total classification ac-
curacy is of 54.67%. The lower levels of the tree, as well as the
high number of classes considered, make the all-class classifica-
tion rate drop to 58.71%. To achieve higher rates at these levels,
more sophisticated, genre-specific features are needed.

Concerning computational costs, it was measured that the im-
plemented prototype application operates faster than real-time on
a 1 GHz processor.
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