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ABSTRACT

We present a system for source separation from monau-
ral musical mixtures based on sinusoidal modeling and
on a library of timbre models trained a priori. The mod-
els, which rely on Principal Component Analysis, serve as
time-frequency probabilistic templates of the spectral en-
velope. They are used to match groups of sinusoidal tracks
and assign them to a source, as well as to reconstruct over-
lapping partials. The proposed method does not make any
assumptions on the harmonicity of the sources, and does
not require a previous multipitch estimation stage. Since
the timbre matching stage detects the instruments present
on the mixture, the system can also be used for classifica-
tion and segmentation.

1 INTRODUCTION

Separation of a musical mixture into its sources can greatly
facilitate content analysis for Music Information Retrieval
purposes, and allows other applications like remixing or
upmixing to a larger number of channels than the original
if multitrack recordings are not available. We address sep-
aration from a single channel, which is a highly underde-
termined problem that requires either strong assumptions
about the nature of the sources, a fair amount of a priori
information, or a combination of both.

The main assumption taken in underdetermined sepa-
ration is the sparsity of the sources, which leads to the
use of elaborate signal models. An example thereof is the
use of Nonnegative Sparse Coding [1]. Other approaches
are based on sinusoidal modeling, which allows a detailed
handling of overlapping partials and is also a highly sparse
model. They are based on grouping the extracted partials
according to Auditory Scene Analysis cues. In [2], ampli-
tude smoothness is modeled by performing basis decom-
position on the harmonic structures and their evolution in
time. In [3], spectral filtering techniques are used to re-
solve overlapping sinusoids. Most approaches based on
sinusoidal modeling rely either on a previous multipitch
estimation stage or on the knowledge of the pitch score of
the mixture [2, 3].
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The above methods are unsupervised (i.e., there is no
training phase) and are based on generic source mod-
els. To further improve separation, statistical models of
the sources can be trained beforehand on a database of
isolated source samples. Examples of this supervised
approach include the use of learnt spectral priors with
bayesian harmonic models [4] and the derivation of tem-
plates for timbral features [5].

In the present contribution, we propose a system for
the separation of sources from single-channel mixtures of
musical instruments based on sinusoidal modeling and on
a library of pre-trained timbre models. Since it also out-
puts onset/offset information and the instrument each note
belongs to, it can also be used for segmentation or poly-
phonic instrument recognition. The timbre models are
time-frequency templates that describe in detail spectral
shapes and their evolution in time. In contrast to most
previously existing approaches, no assumptions on har-
monicity are made, which allows to separate highly in-
harmonic sounds or to separate chords played by a single
instrument. Furthermore, no previous multipitch estima-
tion or any kind of a priori pitch-related score is needed.
Instead, separation is solely based on common onset prop-
erties of the partials, and on the analysis of the evolution
in time of the spectral envelope they define. The knowl-
edge of the number and names of the instruments is not
mandatory, but will obviously increase the performance.

Figure 1 shows an overview of the proposed separation
system. First, the mixture signal is subjected to sinusoidal
modeling, obtaining a set of sinusoidal tracks. A simple
onset detector based on identifying synchronously start-
ing tracks then allows to select the partial tracks that are
going to be matched with the timbre models in the next
stage. After each common-onset group of partial tracks
has been assigned to an instrument, the overlapping part
of the tracks is retrieved from the models. Finally, the
separated tracks are synthesized using additive synthesis.

2 TRAINING OF THE TIMBRE MODELS

The used timbre models are based on the spectral envelope
and its evolution in time. Their design and training pro-
cess has been described in detail in [6]. It is based on per-
forming Principal Component Analysis (PCA) on the set
of training spectral envelopes extracted from a database
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Figure 1. System overview.

of isolated notes. The final result is a set of prototype
curves in a reduced-dimensional timbre space. When pro-
jected back to the t-f domain, each prototype trajectory
corresponds to a prototype envelope consisting of a mean
surface and a variance surface, which we will denote by
Mi(k, r) and Σi(k, r), respectively, where i = 1, . . . , I
is the instrument index, k = 1, . . . ,K is the frequency
bin index, and r = 1, . . . , R is the frame index (we will
consider the same number of frames R for all models).
Analogously, this can be interpreted as a Gaussian Pro-
cess with parameters varying in the time-frequency plane.

3 SEGMENTATION AND SEPARATION

3.1 Sinusoidal modeling

The sinusoidal model approximates a signal as a sum of
sinusoids with time-varying amplitudes, frequencies and
phases. The successive stages of spectral peak picking and
partial tracking are performed to obtain a frame-wise ap-
proximation to that model, yielding a triplet of amplitude,
frequency and phase information xpr = (Apr, fpr, θpr),
for each partial p and each time frame r. We use a stan-
dard procedure, as described in [8].

3.2 Onset detection

Sinusoidal extraction is followed by a basic onset detec-
tion stage consisting of counting the number of new tracks
within a certain frame range. If b(r) is a function giving
the number of tracks born at frame r, we define an onset
detection function o(r) as a moving average of order C:
o(r) = 1/C

∑C−1
c=0 b(r−c). Its highest peaks are declared

as the onset positions Lon
o for o = 1, . . . , O.

3.3 Track grouping and labeling

All tracks tt having its first frame within the interval
[Lon

o − C,Lon
o + C] for a given onset location Lon

o are
grouped into the set To. A track belonging to this set can
be of one of the following types:

1. Nonoverlapping: if it corresponds to a new partial
not present in the previous note or group of notes.

2. Overlapping with previous track: if its initial fre-
quency is close, within a narrow margin, to the fi-
nal frequency of a partial from the previous note or
group of notes.

3. Overlapping with synchronous track: if it coincides
in frequency, within a narrow margin, with a track
belonging to the same track group To.

Tracks of type 2 are easily detected, and correspondingly
labeled, by searching the set To−1 for a track fulfilling the
narrow frequency margin condition. Whether the rest of
tracks are of type 1 or type 3 cannot be detected at this
point of the system. Tracks of type 2 and 3 can be further-
more classified as resulting from overlaps between partials
belonging to the same or different instruments. Whether
a track of type 2 corresponds to the same or to different
instruments is irrelevant for our purposes since the corre-
sponding notes will be segmented and separated anyway.
On the contrary, tracks of type 3 belonging to the same
instrument will be left intact without separation in order
to detect same-instrument chords as belonging to a single
source (note that our goal is different than that of tran-
scription, which would require to detect the constituent
notes of the chord). Currently, type 3 tracks from differ-
ent instruments cannot be currently reliably separated, and
thus the system will not support separation of notes from
different instruments and exactly the same onsets. Thus,
all tracks of types 1 and 3 are considered as belonging to
the same source. Finally, the offset Loff

o corresponding
to a given onset Lon

o is declared as the last frame of the
longest partial of group To.

3.4 Timbre detection

The timbre detection stage matches each one of the onset-
related track groups To with each one of the prototype
envelopes derived from the timbre models, and selects the
instrument corresponding to the highest match. As mea-
sure of timbre similarity between the track group To and
the model formed by parameters θi = (Mi,Σi), we use
the following likelihood function:

L(To|θi) =
∏
t,r

p (Atr|Mi(ftr),Σi(ftr)) (1)

where Atr and ftr are the amplitude and frequency, re-
spectively, on the r-th frame of the t-th track tt ∈ To,
p(x) denotes a unidimensional Gaussian distribution, and
Mi(ftr) and Σi(ftr) denote the evaluation of each pa-
rameter matrix at the frequency point ftr. In order to
obtain the quantities Mi(ftr) and Σi(ftr) for each data
point, the model frames closest in time to the input frames
are chosen, and the corresponding values for the mean
and the variance are linearly interpolated from neighbor-
ing data.

In order to deal with amplitude and temporal scaling
uncertainty, a 2-D parameter search must be performed to
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Figure 2. Track extension and substitution.

find the best matches. Amplitude scaling is denoted by
term α and time scaling is performed by stretching the
partial tracks towards the offset. Then, the finally used
likelihood function becomes:

L(To|θi) = max
α,N

∏
t,r

p
(
AN

tr + α|Mi(fN
tr ),Σi(fN

tr )
)
(2)

where AN
tr and fN

tr denote the amplitude and frequency
values for a track belonging to a group that has been
stretched so that its last frame is N .

3.5 Track extension and substitution

Once a track group To has been declared as produced by
instrument i, the corresponding prototype envelope means
Mi are used for the two following purposes:

1. Tracks of type 1 or 3 that are shorter than the cur-
rent note (which can either result from a partial am-
plitude approximating the noise threshold and thus
remaining undetected or by the imminent appear-
ance of a partial from the next onset group overlap-
ping with it) are extended towards the offset by se-
lecting the appropriate frames from Mi and linearly
interpolating the amplitudes at the mean frequency
of the remainder of the track. The amplitudes re-
trieved from the model are scaled so that the ampli-
tude transition between original and extended sec-
tions of the partial is smooth.

2. Overlapping tracks of type 2 are retrieved from the
model in their entirety by interpolating the model at
the frequency support of the track. If the track is
shorter than the note, it is again extended using the
same procedure as above.

Figure 2 shows an example of the results of the track
extension block.The OV labels indicate overlapping tracks
of type 2 and NOV means nonoverlapping tracks (type 1).

Polyphony 2 3
1. Intervals / arpeggios 8.95 5.38

2. Sequences 3.17 2.26

Table 1. Results from experiments 1 and 2: Spectral
Source-to-Residual Ratios (SSRR) in dB.

Short, nonoverlapping partials are extended to the offset
(marked by extension) and overlapping tracks of the sec-
ond offset are marked by substitution. Note that any re-
gion marked as substitution additionally implies an exten-
sion of the nonverlapping tracks from the previous onset.

4 EXPERIMENTS AND RESULTS

Since the phases of the sinusoids are not preserved by the
separation algorithm, the evaluation is done in the t-f do-
main. We use a spectral signal-to-residual ratio (SSRR):

SSRR = 10 log

∑
k,r |S(k, r)|2∑

k,r(|S(k, r)| − |Ŝ(k, r)|)2
(3)

where S(k, r) and Ŝ(k, r) are respectively the spectro-
grams of the original and separated sources. Although
the SSRR is a separation quality measure, it should be
noted that it will also reflect errors of any other part of the
system, like timbre detection or onset/offset definition. A
note being classified with the wrong instrument will have
its overlapping partials extracted from the wrong model,
and thus will decrease separation quality. All samples
used for the experiments were extracted from the RWC
Musical Instrument sound database [7]. A selection of
separation audio examples is available on line 1 .

4.1 Experiment 1: Intervals and Arpeggios

For the first, simplest evaluation test, we consider mix-
tures of single notes from different instruments playing
2-note intervals or 3-note arpeggios. For each case, 10
different mixtures were generated. Here, the instruments
contained in the mixture were considered unknown and
a library of 5 instrument models (piano, oboe, clarinet,
trumpet and violin), trained over the 4th octave, was used.
Table 1 shows the results of averaging all SSRR values for
each detected source and for all mixtures.

4.2 Experiment 2: Note sequences

For the second test we used sequences of up to 4 con-
secutive notes played by each instrument. This situation
is more demanding, since all notes from each instrument
need to be correctly classified in order to be grouped into
the same track. 5 mixtures with different melodies and
with up to 3 simultaneous instruments were generated.
For this test, the instruments were known a priori.

1 www.nue.tu-berlin.de/research/projects/
sourcesep/sepmodels/
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Figure 3. Example of separation including chords.

4.3 Experiment 3: Sequences including chords

Our final test involves more complex sequences that can
contain common-onset chords played by a single instru-
ment. Several test sequences with up to 3 simultaneous in-
struments were generated. Figure 3 shows an example of
segmentation and separation of a sequence by three instru-
ments (piano, clarinet and oboe), in which piano chords
appear. In this case, no systematic evaluation has been
performed to the current time. This and other audio ex-
amples corresponding to this experiment can be found on
the web page mentioned above.

5 CONCLUSIONS

A method has been proposed that allows separation of
musical instrument sounds from a single-channel mixture
without making any assumptions on harmonicity, and with-
out a previous multipitch estimation stage. This makes the
extraction of the notes and chords played by a single in-
strument possible without pitch-related a priori informa-
tion. The system is based on a stored library of proba-
bilistic timbre models describing the characteristic behav-
ior of each instrument’s spectral envelope in time and in
frequency. Experiments using mixtures of up to 3 notes
from up to 5 instruments, including mixtures with single-
instrument chords, have been shown to demonstrate the

viability of the method.
The main limitation of the system is that notes with

common onsets played by different instruments cannot be
currently separated. A first direction towards solving this
was to match the tracks to the timbre models individu-
ally, rather than in common-onset groups, and declaring
an onset group as a mixture of two instruments if the in-
dividual track classification result was spread across the
corresponding classes. Although some success has been
obtained using this approach, it still lacks robustness. In
our future research, the present system will be extended
to stereo mixtures, so that the additionally available spa-
tial information will allow to detect common onset notes
from different instruments.
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