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ABSTRACT

Spectrogram factorization techniques decompose a
sound into a set of characteristic spectral shapes and a set
of corresponding temporal evolutions. This can be ex-
ploited for a cross-synthesis-like processing by combin-
ing the spectral shapes of one sound with the temporal
evolutions of the other. A system is proposed that imple-
ments such a task in an unsupervised way by means of
a comparison of the involved spectral shapes in terms of
timbral similarity, and a phase reconstruction algorithm
for the resynthesis. The system enables cross-synthesis at
the level of intra-note resonances, transients or temporali-
ties. Some illustrative sound generation examples will be
presented and discussed.

1. INTRODUCTION

Matrix factorization methods, when applied to spectro-
grams, have the ability to reveal underlying, dynamic pat-
terns that constitute the sound being analyzed, and as such,
they have been extensively used in analytic applications
such as audio content analysis, music information retrieval
and source separation. Their usage for musical compo-
sition or sound synthesis has only recently started to be
explored, though [8]. In very broad terms, it can be said
that they decompose a sound as a set of time-frequency
layers. Such layers can then be processed separately, or
be used as building blocks for resynthesis. This suggests
that spectrogram factorization could offer an attractive al-
ternative to other analysis/resynthesis techniques such as
sinusoidal or source/filter modeling.

In its most general definition, matrix factorization aims
at approximating an observed matrix X as a product of
two factor matrices: X ≈ WH. A particular case of in-
terest is when the combined size of the factor matrices is
smaller than the size of the observed matrix. If matrix W
is of size F×K and H is of size K×T , then this condition
will write: F×K+K×T � F×T . The internal product
dimension K is usually a fixed parameter given to the fac-
torization algorithm. When this condition holds, matrix
factorization is also called factor analysis or low-rank ap-
proximation. Apart from its benefits for data compression
purposes, the usefulness of low-rank approximation is ex-
plained by the fact that setting a small K forces the algo-
rithm to “condense” as much information as possible from
the observation matrix into the two smaller factor matri-
ces. If the approximation is successful, the factor matrices

will end up containing the essential information needed to
reconstruct X as closely as possible from much less data
points, and such information corresponds to “hidden fac-
tors” (latent variables) present in the observed data.

One possible way to interpret the decomposition pro-
duced by matrix factorization is to consider that the ap-
proximation equals the sum of a set of K matrices Ck, all
of the same size than X, and each one of which has been
generated by the outer product of the k-th column of W
with the k-th row of H:

X ≈WH =
K∑

k=1

Ck =
K∑

k=1

wk ⊗ hk, (1)

where wk is the k-th column of W, hk is the k-th row of
H, and ⊗ denotes the outer product (note that the outer
product of two vectors, given by a⊗b = abT produces a
matrix, whereas the inner or scalar product 〈a, b〉 = aT b
produces a scalar). The component matrices Ck are some-
times called rank-1 terms. A graphical representation of
Eq. 1 is given in Fig. 1.

In the specific case of matrix X being a magnitude
spectrogram of F frequency bins and T temporal frames
(i.e., its colums are the spectral frames, and its rows
the evolution of each frequency bin over time), then the
columns of W can be interpreted as spectral shapes, and
the rows of H as coefficients over time. Thus, each com-
ponent Ck can be thought of as a magnitude spectrogram
generated by multiplying a static spectral shape wk by
a time-varying weight hk. In this context, the wks are
sometimes called spectral bases (or just bases) and the
hks are called activations. The activations indicate the
importance of each spectral shape at each time frame, and
thus contain powerful information that can be exploited
for analysis or separation. For instance, if the algorithm
finds a spectral basis that strongly resembles the spectrum
of a particular note of an instrument present in the ob-
served signal, then a high value at a given time frame of
the corresponding activation will indicate an onset of this
note, and this can be exploited for transcription applica-
tions [6]. Also, by resynthesizing the component spectro-
grams Ck (or appropriate subsets thereof), one might be
able to perform source separation with simple mixtures
[9]. Even if current state-of-the-art systems for content
analysis or source separation employ more sophisticated
signal models than a single bases/activations decomposi-
tion, spectrogram factorization remains the core element
of most of the best-performing approaches. The most pop-
ular technique used for spectrogram factorization is Non-
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Figure 1. Interpretation of matrix factorization as a sum of rank-1 terms.

negative Matrix Factorization (NMF), which is also used
here and will be introduced in Sect. 3.

There have been a few previous uses of spectrogram
factorization in musical composition or sound synthesis,
as will be introduced in the next section. Most of them in-
volve the separate processing of the extracted components
from a single input sound. In the present article, a new
technique is proposed, in which two sounds are subjected
to spectrogram factorization (a source sound and a target
sound). The obtained sets of source and target bases and
activations can be then combined with each other, and an
automatic method is proposed to that aim. For instance,
all (or some) of the source sound’s activations can be im-
posed on the bases of the target sound to generate an hy-
brid sound that combines the timbre of the target with the
temporality of the source. The idea is similar to that of
cross-synthesis via source/filter models or vocoders (in
which the global spectral envelope of one sound is im-
posed onto the other), but allows more flexibility by en-
abling cross-synthesis-like processing at the level of the
components. As an example, it can be used to separately
control the individual resonances or formants of a target
sound by the separate temporal evolutions of the reso-
nances of the source sound. Automatizing such procedure
raises some questions such as the appropriate mapping be-
tween source and target spectral bases and the problem of
phase reconstruction for resynthesis. Solutions to these
issues will be proposed throughout the article.

It should be noted that another key difference between
traditional source/filter-based cross-synthesis and the cur-
rent approach is that, in the former, the temporalities of
both source and target signals have a direct influence on
the hybrid sound, whereas here, temporality and timbre
are fully decoupled and contributed separately by source
and target. In this sense, a related idea is spectral reani-
mation [3], in which timbre and time are also decoupled,
albeit in a different way: each spectral frame from the
source is replaced, keeping the sequence, by the most sim-
ilar one from the target.

2. USES OF SPECTROGRAM FACTORIZATION
IN MUSICAL CREATION

As mentioned above, the use of spectrogram factorization
as a tool for musical composition or performance has been
seldom explored. A review of five recent musical works
using factorization techniques is included in [8]. Most of
them are based on Probabilistic Latent Component Anal-

ysis (PLCA), which can be understood as a probabilistic
reformulation of NMF. The cited works use an implemen-
tation of PLCA decomposition called SoundSplitter to
decompose a sound into individual time-frequency com-
ponents, which are then processed or manipulated sepa-
rately. As an example, Decomposing Autumn (2010) by
David Plans Casal uses PLCA to generate a database of
components extracted from a recording of a piano etude
by Ligeti. The stored components are then matched live
with the sounds produced by the performer using music
information retrieval techniques.

Another example cited therein and more relevant to
the work presented here is the piece Elementary Sources
(2011) by Spencer Topel. Again, an input sound is de-
composed by PLCA, and some of the components are then
selected and resynthesized. It contains some elements of
cross-synthesis, since spectral bases and activations are
manually recombined in different ways through trial and
error. The recreated components were then transcribed
into musical notation for interpretation by a string quar-
tet. During performance, the quartet is mixed with live
electronics derived from the PLCA components.

In [4], a complex natural soundscape is decomposed
by PLCA. The extracted temporal activations are then used
to drive several parameters of a group of synthesizers. In
this example, the decomposition is used to impose tempo-
ral structure, rather than to hybridize timbre.

Another domain of new musical application of ma-
trix factorization is sound effects processing. In [5], new
sound effects are proposed by analyzing the sound with
NMF and reordering the extracted components according
to features calculated on the bases or the activations. The
components are then assigned different weights according
to their new position, and the final signal is reconstructed
by adding back the weighted components.

3. PROPOSED SYSTEM

Figure 2 shows a block diagram of the proposed cross-
synthesis system. By convention, the current system is
designed so that the temporality of the output sound is
provided by the source sound, and its timbre is mainly
provided by the target sound. The following subsections
will go through the different processes taking place.

3.1. Source and target analysis

The first step of the process is to analyze both source sig-
nal s(n) and target signal t(n) by means of matrix factor-
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Figure 2. Overview of the factorization-based cross-synthesis system.

ization applied to their respective magnitude spectrograms
XS = |STFT{s(n)}| and XT = |STFT{t(n)}|, where
STFT denotes the Short Time Fourier Transform. In par-
ticular, each magnitude spectrogram is subjected to NMF,
which is a particular type of matrix factorization that en-
forces all elements of the output factor matrices to be posi-
tive or zero (and assumes the same about the input matrix).
When working with magnitude audio spectrograms, NMF
is by far the most popular method for low-rank approx-
imation, since the resulting bases and activations have a
direct physical interpretation as respectively, static mag-
nitude spectra and temporal gain functions (other factor-
ization methods such as Principal Component Analysis or
Independent Subspace Analysis can produce negative val-
ues in both bases or activations).

There are several existing NMF algorithms, with dif-
ferent cost functions and optimization methods. For the
purpose of this article, a multiplicative update algorithm
based on the minimization of the Frobenius norm (sum of
element-wise squared errors) of the approximation error
was used [2]. Such error measure is given by

DF = ‖X−WH‖F =
F∑

f=1

T∑
t=1

(X(t,f) − (WH)(t,f))2.

(2)
The choice of the number of components for source

and target (respectively, KS and KT ), is critical. They
are the two main parameters of the system, and they must
be carefully set depending on the desired results. As a
general guideline, the values of KS and KT (which do
not need to be the same) should depend on the number of
pitches present in either analyzed sound. Two cases are
considered here:

• Note-level analysis. If K equals the number of
notes of different pitches present in the analyzed
sound, the resulting wks will very likely contain
one spectrum per pitch. This is useful if a cross-
synthesis at the note level is desired. However, the

resynthesis of the individual note-level components
will lack dynamics, since each note will correspond
to a rank-1 term (static spectrum multiplied by a
time-varying gain).

• Resonance-level analysis. More interesting results
can be obtained if cross-synthesis is performed at
the resonance-level, i.e., if K is set higher than the
number of pitches (e.g., as a multiple thereof). In
this case, each pitch on the sound will be decom-
posed into a subset of bases. If prominent reso-
nances or formants are present in each note, they
will be revealed and separated by the factorization
into different wks. The same is true for other non-
resonant salient events such as attacks or transients.
This enables transformations on the internal tempo-
rality of the sounds. On the other hand, one must
be careful not to set K to high to avoid noisy, non-
informative components.

Figure 3(a) shows an example of a three-note, note-
level analysis with K = 3 (piano sound). The functions
plotted on the top of the spectrogram are the temporal ac-
tivations hk. The functions to its left are the spectral bases
wk. It can be seen that, since the number of components
equals the number of pitches, the factorization algorithm
has assigned each pitch to a component, thus, the spectral
bases contain spectra showing each note’s characteristic
harmonics, and the activations clearly indicate each note’s
onset and global energy evolution.

On the other hand, Fig. 3(b) shows an example of
resonance-level analysis where the analyzed sound is a
single note played by a bell with clearly audible reso-
nances. Since the component number K = 3 is in this
case higher than the number of pitches, the algorithm has
split the resonances among different components. Note
that the activations clearly show the energy oscillations
of the individual resonances. These example sounds, and
separated components, can be listened to on the compan-



ion website to this article that will be presented in Sect.
4.

3.2. Mapping of spectral bases

After the analysis stage, a set of bases and activations for
source and target sounds are obtained and stored. The
main question that motivated the design of the present
system was how to automatically combine the obtained
bases and activations in order to obtain satisfactory hy-
brid sounds. Directly multiplying the target base matrix
with the source activation matrix will almost invariably
produce poor results, because of the following two rea-
sons.

Firstly, NMF suffers from what is called the permuta-
tion problem: the ordering of its output components is ran-
dom. This is due to the random initializations used by the
multiplicative update algorithm. Thus, by directly mul-
tiplying activations and bases from two unrelated factor-
izations, high-energy bases of the source (i.e., important
spectral shapes associated with a high average activation)
might get multiplied by low-energy or noisy activations of
the target. Vice-versa, noise-like spectral shapes can get
unnaturally amplified by high-energy activations. In the
end, the output will likely be noisy.

Secondly, more natural hybrid sounds will be obtained
if the source and target components are matched follow-
ing some notion of similarity. In the present version of
the system, temporal information is fully provided by the
source sound, and timbral information by either the target
sound, or by a combination of target and source 1. Thus, a
comparison of the spectral bases in terms of timbral simi-
larity is of interest here.

The purpose of the base mapping module is to cir-
cumvent these two issues. It computes a similarity ma-
trix S of size KS × KT between all possible couples of
source/target spectral bases. A simple and widely-used
approximation of timbre similarity is used here: the bases
are first subjected to feature extraction and converted to
Mel Frequency Cepstral Coefficients (essentially, a com-
pact description of the spectral envelope), and subse-
quently compared to one another by means of the Maha-
lanobis distance:

S(i,j) =
√

(mS,i −mT,j)T Σ−1(mS,i −mT,j), (3)

where mS,i = MFCC{wS,i}, mT,i = MFCC{wT,i},
and Σ is the covariance matrix computed over the whole
dataset (i.e., of all feature vectors mS,i and mT,i put to-
gether). The Mahalanobis distance is preferred to the Eu-
clidean distance due to its scale-invariance.

By default, the base mapping module assigns each
source basis to its closest target basis according to the
similarity matrix S, and rearranges the target bases so that
their new ordering (as columns of the new matrix WS+T )
is the same as the ordering of their corresponding similar

1This is just a convention of the current system. In future extensions,
merging source and target temporalities might be another option.

bases from the source. When the final hybrid spectrogram
is obtained with the multiplication WS+T HS , the source
activations are now acting on components of similar spec-
tral envelope from the target2.

The rearrangement of the bases and activations is of-
ten enough to get satisfactory hybrid sounds (sound ex-
amples will be discussed in Sect. 4). Nevertheless, sev-
eral optional operations have been implemented into the
base mapping module, to gain further control on the cross-
synthesis process: injectivity constraint, similarity thresh-
olding and combination of bases.

3.2.1. Injectivity constraint

There is no guarantee that the base mapping will be a
one-to-one (injective) relation. For instance, several bases
from the source might be close together in terms of feature
similarity, so that they will be assigned to the same single
basis of the target. This might be a desirable behavior if
the main goal is to preserve the timbral fidelity in the pro-
cess. However, if many source bases point to very few
target bases, this will result in a target sound with little
internal dynamics.

To control such a trade-off between timbre fidelity and
temporal variability, the user might enable an injectivity
constraint, that ensures that the base mapping results in a
one-to-one assignment. If that option is activated, a list
of the target bases that have already been assigned to a
source based is maintained. If a target base is marked as
already selected for that source base, the second closest
target base to that source base is selected, and so on.

3.2.2. Similarity thresholding

Another way to control the timbral fidelity is to define
a similarity threshold. All the bases that are less simi-
lar to each other than the threshold are discarded (and so
are their corresponding activations). In the current imple-
mentation, the optional threshold is defined as the median
value of all the similarity values contained in the similar-
ity matrix S.

3.2.3. Combination of spectral bases

Finally, instead of discarding the bases that are too dif-
ferent, the user might choose to have them replaced by
the corresponding source bases. In this case, the hybrid
base matrix WS+T will end up containing bases from
both source and target signals: those target bases that are
similar to some source bases, and those source bases that
do not have a close match. The motivation of this option is
to allow keeping the dynamics of the source sound even if
the timbre of source and target sounds are very different.

3.3. Phase reconstruction

After the hybrid magnitude spectrogram has been ob-
tained as XS+T = WS+T HS , it must be inverted to gen-

2Note that base mapping by a mere rearrangement of bases and acti-
vations requires KS = KT .
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(b) Target analysis at the resonance level.

Figure 3. Examples of analysis by spectrogram factorization.
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(a) Source-to-target cross-synthesis.
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(b) Target-to-source cross-synthesis.

Figure 4. Examples of cross-synthesis by spectrogram factorization with the source and target from Fig. 3.

erate the output hybrid waveform. NMF (as many other
methods used for spectral modifications), does not take
into account phase information and only operates on mag-
nitude and frequency. Thus, a technique for appropriate
phase reconstruction is required.

In other factorization-based approaches requiring
resynthesis, such as source separation or effects process-
ing [5], phase is usually retrieved from the original in-
put signal, either by directly attaching the phase spectro-
gram of the input to the processed magnitude spectrogram
and inverting the STFT, or by time-frequency masking ap-
plied to the input (usually via Wiener filtering). Neither
of those solutions is appropriate for the present applica-
tion. Since originally unrelated pairs of base and activa-
tion matrices are being combined, there is no guarantee
of phase coherence between input and output frequency
bands. Furthermore, time-frequency masking is not ap-
plicable, since the output sounds are not generated from
the input in a subtractive manner by filtering, but rather
consist of completely new spectrogram components gen-
erated by the products wS+T,k ⊗ hT,k.

Instead, the proposed system uses the Griffin and Lim

(GL) algorithm [1] for constructing the output waveform
from the hybrid magnitude spectrogram XS+T . The GL
algorithm is an iterative gradient descent method that usu-
ally converges to a waveform that is perceptually satisfac-
tory for a range of sound processing algorithms based on
magnitude spectrogram modification or creation [7].

The user can optionally choose to invert the individ-
ual cross-components wS+T,k ⊗ hT,k in order to listen
to them separately. In that case, the GL algorithm is per-
formed on each cross-component spectrogram.

4. EXAMPLES OF USAGE

Three examples of usage of the system will be briefly
presented here. The corresponding sounds, and several
more, can be listened to on the companion website3. Note
that these are only a few possibilities among many oth-
ers. All the sounds processed with the present, initial ver-
sion of the system are mono (single-channel) and single-
voiced (each source or target sound contains only one in-
strument).

3http://jjburred.com/research/icmc2013/



4.1. Note-level to resonance-level cross-synthesis

In this usage scenario, the source sound (which provides
the temporality) is analyzed at the note level and the target
sound (which mainly provides the timbre) is analyzed at
the resonance level. The activations of the first are com-
bined with the bases of the second. A simple example is
shown in Fig. 4(a) (three-note piano source against single-
note bell target). The onsets and energy evolution of the
piano notes are applied to the resonances of the bell. Each
piano event triggers a bell resonance, which then follows
the piano’s energy decay.

4.2. Note-level to resonance-level cross-synthesis

A substantially different effect is obtained by doing the
inverse: analyzing the source at the resonance level and
the target at the note level. The result is illustrated in Fig.
4(b), where the roles of the previously used source and
target sounds have been reversed. The temporal (mostly
oscillating) evolution of the resonances of the single bell
strike are applied to entire piano notes. The result is an hy-
brid sound where each internal bell resonance has been re-
placed by piano-sounding oscillations, each one of which
has also retained the original pitches played by the piano.

4.3. Speech to resonance-level cross-synthesis

Finally, some experiments involving speech have been
performed, to further get an insight into the several im-
portant differences between this system and the classi-
cal source/filter or vocoder approaches (which are mostly
used with voice). For instance, if the source is speech and
the target is a musical sound rich in resonances, the indi-
vidual vowels (formant structures) of the voice will match
the most resembling target resonances (a related exam-
ple sound is included on the webpage). This is due to
the usage of MFCCs as features for the base mapping.
Since the formants are matched individually, the resulting
“speaking” hybrid sound will be less intelligible than hy-
brid sounds produced by source/filter approaches, where
the global formant structure of the modulator is imposed
on the carrier. The speech-like nature of the source is dis-
cernible, although in a more subtle way.

5. CONCLUSIONS

A system has been presented that uses spectrogram fac-
torization to automatically analyze and cross-synthesize
two sounds. The layer-like decomposition provided by the
factorization allows to apply the internal, resonance-level
temporality of one sound to the timbral structure of the
other. A preliminary system has been presented, which
deals with the issues of similarity-based mapping of the
spectral bases and phase reconstruction from magnitude-
only hybrid spectrograms. A first set of synthesis results
have been presented and discussed.

The proposed framework can be subjected to evalua-
tion under several other scenarios, depending on the na-

ture of source and target sounds and the respective num-
ber of components chosen. A more systematic exploration
of all these possibilities will be performed in the future.
Also, a different choice of analysis features will obviously
produce very different-sounding results.

There are also many ways in which the present sys-
tem can be extended. The relatively simple factorization
method used (NMF based on the Frobenius norm) could
be replaced by more powerful and more recent methods
from the field of source separation, such as the ones apply-
ing factorization separately on the source and filter parts.
Another family of interesting methods is the one that uses
temporal or spectral smoothness constraints, which could
lead to more natural-sounding components.

For a practical use of the system as a composition or
performance tool, an appropriate mapping of user actions
to factorization parameters needs to be studied in detail.
For performance, the system could be adapted to real time
by the use of online matrix factorization algorithms.
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