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Juan José Burred and Thomas Sikora
Communication Systems Group

Technical University of Berlin, Germany
{burred,sikora}@nue.tu-berlin.de

Abstract— Sparsity-based source separation algorithms often
rely on a transformation into a sparse domain to improve
mixture disjointness and therefore facilitate separation. To this
end, the most commonly used time-frequency representation has
been the Short Time Fourier Transform (STFT). The purpose of
this paper is to study the use of auditory-based representations
instead of the STFT. We first evaluate the STFT disjointness
properties for the case of speech and music signals, and show
that auditory representations based on the Equal Rectangular
Bandwidth (ERB) and Bark frequency scales can improve the
disjointness of the transformed mixtures.

Keywords—source separation, auditory scales, sparse signals,
mixture disjointness.

I. INTRODUCTION

Most approaches towards sound separation can be classified
into two broad types: Computational Auditory Scene Analysis
(CASA) and Blind Source Separation (BSS).

The CASA approach consists of studying and imitating
the human hearing system and its ability to perceive and
understand sound entities that are present in perceived sound
complexes, which in this context are called auditory scenes.
To this end, computational models have been developed that
mimic the several stages of auditory perception from the
acoustical processing in the ear to the neural and cognitive
processes in the brain.

BSS approaches take into account statistical properties of
the sources, the mixtures or the mixing processes and attempt
to solve the separation problem from a purely mathematical
point of view. As the term blind denotes, the mixing process
and the sources are unknown. However, it is possible (and
in fact absolutely necessary) to make assumptions about their
statistical nature.

Both kind of approaches have been successful in different,
specific separation scenarios [1] but up to now very little
work has been done in combining their respective advantages.
Hybrid CASA/BSS systems are believed to have the potential
to improve separation reliability with a wider range of mixture
types.

Assuming that the sources are mixed linearly and that no
reverberation and no noise are present in the mixing process,
the problem formulation is to find the vector of N sources
s = (s1[n], . . . , sN [n])T from the observation of the vector of

M mixtures x = (x1[n], . . . , xM [n])T given by

x = As (1)

where A is the M × N mixing matrix that describes the
contributions of each source to each mixture. When there are
the same number of sources than mixtures (M = N ), the
separation is said to be determined or complete. If the sources
are statistically independent and non-gaussian, a determined
mixture can be successfully unmixed by Independent Compo-
nent Analysis (ICA), which consists of estimating the mixing
matrix and then inverting it to directly solve eq. 1.

However, in many practical situations, the underdetermined
or overcomplete case (M < N ) is more common. In this case,
the mixing matrix is not invertible and therefore common ICA
algorithms are not applicable; furthermore, estimating A and
s become two different problems.

II. SPARSITY AND DISJOINTNESS

Most of the underdetermined BSS algorithms for the estima-
tion of A and s are based on the assumption that the involved
signals have some degree of sparsity. A signal is said to be
sparse if most of its components are zero or near to zero.
Sparsity is desirable for source separation because, the more
sparse a signal is, the less it will overlap with the other signals
in a mixture (unless the signals follow identical probability
distributions). The disjointness of a mixture can be defined as
the degree of non-overlapping of the mixed signals. In most
cases a higher sparsity will result in a higher disjointness and
in an easier separation.

Most audio mixtures are not sufficiently disjoint in the
time domain, and therefore it is often required to transform
the signals into a sparser or more disjoint domain, such as
a time-frequency (t-f) representation, perform separation in
the transformed domain, and resynthesize back the estimated
sources into the time domain. This approach is followed
in previous works [2], [3] using the Short Time Fourier
Transform (STFT) as t-f representation. In this paper we show
that it is possible to further improve disjointness replacing the
STFT with a t-f representation in which the frequency axis
has been warped following an auditory frequency scale. This
is due to the fact that auditory scales emphasize resolution
in the mid-low frequency range, where most sound energy
is usually concentrated [4]. As representatives of auditory

0-7803-9282-5/05/$20.00 ©2005 IEEE                          ICICS 2005

F4C.4

1466



frequency warpings, the Equal Rectangular Bandwidth (ERB)
and the Bark scales have been chosen.

III. MEASURING DISJOINTNESS

To measure the disjointness D of a mixture we use the W-
disjoint orthogonality (WDO) criterion for t-f representations
[2], which relies on the concept of unmixing by binary
masking. If a mixture is sufficiently disjoint in some t-f
domain, it can be used to estimate a set of unmixing masks,
one for each source, that will approximately extract the desired
source when applied on the mixture representation. The key
idea behind the WDO-based measurement method is that the
unmixing capabilities of a set of ideal masks computed from
the knowledge of the sources can be also interpreted as the
intrinsic disjointness of the mixture.

To measure the WDO of a set of N sources sj [n] we first
define yj [n] as the sum of all signals interfering with source
j:

yj [n] =
N∑

i=1
i�=j

si[n] (2)

Let Sj [n, k] denote a discrete t-f representation of signal sj [n],
with n the time and k the frequency index. The ideal binary
unmixing mask for source j is defined as

Mj [n, k] =

{
1, 20 log

( |Sj [n,k]|
|Yj [n,k]|

)
≥ 0

0, otherwise
(3)

i.e., Mj [n, k] is the indicator function of the t-f bins to which
source j contributes more than all its interfering sources. The
preserved-signal ratio (PSR) measures the energy loss of the
desired signal after unmixing:

PSRj =
‖Mj [n, k] ◦ Sj [n, k]‖2

‖Sj [n, k]‖2 (4)

where ‖·‖2 denotes the squared �2 norm (energy) and ◦
denotes the Hadamard product (element-wise product). The
signal-to-interference ratio (SIR) measures the energy dif-
ference between the desired signal and its interference after
applying the mask:

SIRj =
‖Mj [n, k] ◦ Sj [n, k]‖2

‖Mj [n, k] ◦ Yj [n, k]‖2 (5)

The WDO for that particular source is defined as

WDOj = PSRj − PSRj

SIRj
(6)

The disjointness of the mixture of the sources can then be
measured as their averaged WDO: D = WDO. A perfect
disjointness (each bin is contributed only by one source)
corresponds to PSR = 1, SIR = ∞ and WDO = 1 and
would result in perfect separation.

WDO can also be used as a BSS performance measure
when based on masks estimated from the mixtures without
knowing the sources. However, it should be noted that in
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Fig. 1. Disjointness against FFT size for 3-source mixtures and 8 kHz
sampling rate.

the case studied here, the above masks are derived with the
sources being known, which implies that the definition of
WDO used here can be interpreted as the upper bound in
unmixing performance by binary masking.

IV. DISJOINTNESS PROPERTIES OF THE STFT

We first performed several experiments to evaluate the
behavior of the STFT regarding disjointness with speech and
music signals. Because of their different time and spectral
characteristics, speech and music signals are expected to be-
have differently, and the validity of the sparseness/disjointness
assumption will vary depending on the signal type.

Throughout our experiments, we used three different audio
datasets, each containing 1 second fragments sampled at 8
kHz. Dataset SP contains a collection of 50 speech utterances.
Dataset UMEL contains 50 fragments of instrumental solos
playing uncorrelated melodies, i.e., melodies randomly drawn
from an instrumental database which are not intended to be
musically coherent when mixed. To evaluate disjointness, 50
different combinations of 3 sources were randomly extracted
from each of these two databases and mixed. Dataset CMEL
(for “correlated melodies”) contains 50 sets of 3 instrumental
fragments extracted from a real multitrack recording, in such
a way that the resulting mixtures constitute excerpts from
a coherent musical performance (in this case a saxophone
quintet). Although uncorrelated musical mixtures are often
employed for evaluating the performance of source separa-
tors, a correlated dataset such as CMEL simulates closer the
requirements of a practical musical unmixing application.

Fig. 1 shows the disjointness as defined above averaged over
all samples from each database as a function of the FFT size
for 3-source mixtures. For the computation of the STFT, a
Hann window was used.

It can be seen that a higher disjointness is possible for music
signals than for speech signals. This can be explained by the
fact that speech signals concentrate their energy in a narrower
part of the spectrum, and therefore spectral overlappings are
more likely to occur. Also, speech disjointness suffers from
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SP UMEL CMEL

% D time 70.8 55.3 51.1
% Dmax STFT 83.4 94.8 90.9
optimal FFT size 512 2048 4096

TABLE I

COMPARISON OF DISJOINTNESS IN THE TIME AND IN THE STFT DOMAIN,

AND OPTIMAL FFT SIZES AT 8 KHZ SAMPLE RATE.

the reduced temporal resolution when increasing the size of
the window. It turns out that for speech signals, a compromise
should be taken to balance temporal and frequency disjointness
by choosing a moderate window size (512 for 8 kHz sampling
frequency), whereas for music signals, frequency disjointness
plays a more important role than time disjointness and so
frequency resolution should be favored.

Mixtures of correlated melodies are less disjoint than un-
correlated ones because of the higher amount of spectral and
temporal overlapping. Their disjointness is expected to vary
strongly according to music type. It will be lower for tonal
and homophonic than for atonal and contrapuntal styles. The
saxophone quintet used for our experiments is tonal and highly
homophonic (the voices in a homophonic musical texture
change notes at the same time, whereas in a contrapuntal style,
each voice behaves more independently).

The disjointness in the time domain was also measured.
Table I compares the averaged time-domain disjointness with
the maximum achievable t-f domain disjointness, and shows
the benefits of transforming into the t-f domain. The table also
lists the FFT size for which these maximum disjointness are
reached when working with 8 kHz sample rate.

V. AUDITORY TIME-FREQUENCY REPRESENTATIONS

Any time-frequency representation with N frequency bands
S[n, k] can be viewed as the output of an N -channel filter
bank. In the case of the STFT, the center frequencies of the
filters are linearly spaced along the frequency axis at the
positions fk,STFT = kfs

N , where fs is the sampling rate,
and their frequency responses are modulated versions of the
frequency response of the analysis window. Thus, the STFT
provides an equal resolution for all frequencies.

Auditory time-frequency representations are obtained by
using non-uniform filter banks in which the center frequencies
follow a non-linear scale defined to simulate the frequency
selectivity of the inner ear. Their resolution is approximately
linear at low frequencies and increasingly logarithmic at high
frequencies. For our experiments we chose two well-known
auditory frequency scales: the ERB and the Bark scale.

The ERB scale is considered one of the most accurate
models of the frequency resolution of the basilar membrane
[5]. It defines the Equal Rectangular Bandwidth of the auditory
filters as a function of frequency as

∆fERB
= Bmin +

f

Qa
[Hz] (7)

where Bmin is the minimum bandwidth for low frequency
channels and Qa is the asymptotic quality factor to which
the high frequency filters tend. The mapping between the
frequency in Hz and an ERB scale in which the filters are
linearly spaced is given by

x
ERB

=
∫

1
∆f

ERB

df = Qa ln
(

1
QaBmin

f + 1
)

(8)

In order to compute the center frequencies for a N -channel
ERB filter bank, we divide the desired range in equal ERB
intervals centered at xk,ERB and then apply the inverse
mapping:

fk,ERB = QaBmin(exk,ERB/Qa − 1) [Hz] (9)

Recommended values for the parameters are Qa = 9.26 and
Bmin = 24.7 Hz.

The Bark scale, also called critical band rate, is defined by
the following bandwidth function [6]:

∆fBark = 25 + 75

[
1 + 1.4

(
f

1000

)2
]0.69

[Hz] (10)

Suitable approximations for the corresponding direct and
inverse frequency warpings [7] are given by

xBark = 7 arcsinh
(

f

650

)
(11)

and
fk,Bark = 650 sinh

(xk,Bark

7

)
[Hz], (12)

where xk is the center of the k-th Bark interval.
In this work we concentrate on studying the effects of the

frequency-warping stage of auditory modeling, motivated by
the previous results that show that spectral resolution is crucial
in improving disjointness. For these reasons, auditory filter
shapes have not been used. Instead, we use a Hann window
as the prototype impulse response, as in the case of the STFT.

It should be noted that, in order for a transformation to be
useful in the context of source separation, it must be invertible,
so that the extracted sources can be synthesized back. Unlike
the STFT, non-linear auditory filter banks cannot generally
be reconstructed perfectly. However, perfect reconstruction is
not critical in source separation, since the by far strongest
signal distortions are introduced by the separation algorithm
itself, and not by the transform inversion. If the overlapping
between frequency responses of adjacent bands is moderate,
it is possible to invert a non-uniform filter bank by weighting
the bands in the synthesis stage accordingly, obtaining synthe-
sized signals with inaudible error. Nevertheless, care must be
taken in adjusting the channel spacing in order to minimize
reconstruction error.

Fig. 2 shows the effect of the ERB frequency warping on the
time-frequency representation of an excerpt of a clarinet play-
ing a 5-note melody. Comparing the spectrogram (magnitude
of the STFT) and an ERB representation it can be observed
that, for the same number of bands, the resolution has been
enhanced in the low frequency range, where most of the signal
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Fig. 2. Comparison of 129-band spectrogram and ERB spectral representation of a clarinet melody.

energy is concentrated, and that the harmonic lines are more
clearly visible and separated. This is the reason why auditory
warpings have the potential to improve disjointness, a fact that
will be confirmed in the evaluation experiments described in
the next section.

The major drawback of filter bank based t-f representations
is their high computational requirements. For a high number
of bands, the needed computation power is much higher than
using FFT-based spectrograms, even after applying downsam-
pling according to the bandwidth of each channel.

VI. DISJOINTNESS PROPERTIES OF AUDITORY

REPRESENTATIONS

Although the WDO procedure outlined in sec. III was
originally defined for the STFT, it can readily be applied with
other t-f transformations, such as auditory transformations.
However, it should be noted that it is only possible to compute
the PSR, SIR and WDO values in the time-frequency domain
if the corresponding transform obeys Parseval’s theorem, i.e.,
if the signal energy in the frequency domain is proportional
to the energy in the time domain. This is not the case for
auditory transformations, which distribute signal energy un-
equally across the spectral bands, depending on the bandwidth
and eventually amplitude weighting of each band. Therefore
it is mandatory to invert the transform and compute the above
quantities in the time domain.

We repeated the WDO experiments with the same datasets,
averaging the results of 50 mixtures per dataset. The results
are shown in figs. 3, 4 and 5. The disjointness of the ERB
and Bark-transformed mixtures is plotted against the num-
ber of bands of the t-f representation and compared to the
corresponding STFT curve of fig. 1. Note that an N -point
STFT window corresponds to a N/2 + 1 band spectrogram
representation.

It can be observed that both the Bark and ERB scales
improve disjointness in all cases, with the improvement being
more significant with speech data than with music data. As
before, this can be explained by the higher energy concentra-
tion of speech in the spectral area where the highest resolution
gain is achieved with the auditory warping. For speech signals,
the disjointness is higher with auditory scales than with the

STFT for all band resolutions. In the case of music signals,
the gain in disjointness is higher when few bands are used and
decreases as the number of bands increases. In the particular
case of correlated melodies, the performance of large-window

2^4+1  2^5+1 2^6+1 2^7+1 2^8+1 2^9+1 2^10+1 2^11+1

0.5

0.6

0.7

0.8

0.9

1
SP dataset

Number of bands

D
is

jo
in

tn
es

s

ERB
Bark
STFT

Fig. 3. Disjointness against number of bands for ERB, Bark and STFT
representations for speech data, 3-source mixtures and 8 kHz sampling rate.
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Fig. 4. Disjointness against number of bands for ERB, Bark and STFT
representations for uncorrelated music data, 3-source mixtures and 8 kHz
sampling rate.
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Fig. 5. Disjointness against number of bands for ERB, Bark and STFT
representations for correlated music data, 3-source mixtures and 8 kHz
sampling rate.

STFT and auditory scales is very similar.

VII. CONCLUSIONS

Combining principles from both the BSS and CASA sep-
aration methods, we have shown that the use of auditory-
based time-frequency representations improves the mixture
disjointness in comparison with usual equal-resolution meth-
ods like the STFT and thus can facilitate separation by time-
frequency based algorithms. The improvement is particularly
significant for speech signals. For music signals, and especially
for mixtures of correlated melodies, further investigation is
needed in order to obtain higher disjointness gains.
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