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Abstract
We address the task of synchronizing a given phoneme tran-
scription with the corresponding speech signal, when the lat-
ter is linearly mixed with background music. To that end, we
propose a new method based on Non-negative Matrix Factor-
ization in the time-frequency domain, which models the speech
as a source-filter factorization that includes a synchronization
parameter matrix. Phoneme models, which consist of collec-
tions of basic spectral envelopes, are learned from a training
set of isolated speech. The model is subjected to an iterative
Maximum Likelihood optimization that concurrently estimates
pitch, synchronization parameters and the contribution of the
music part. Results show the feasibility of the system for appli-
cation in text-informed audio processing and automatic subtitle
synchronization.
Index Terms: voice synchronization, non-negative matrix fac-
torization, source-filter model, information retrieval.

1. Introduction
Automatic text to audio synchronization can be used in several
applications such as subtitling, karaoke and on-line retrieval of
song lyrics. In addition, having the text aligned with the voice
provides valuable information that can be exploited in text-
informed audio processing for synthesis, separation or transfor-
mation applications. Given the spoken or sung text, synchro-
nization consists in finding the time stamps aligning each syn-
chronization unit (usually sentences, words or phonemes) with
the audio signal. While high synchronization performances
have been previously obtained for clean, isolated voice signals,
we focus here on the more challenging task of dealing with
voice signals mixed with a background signal. In particular,
we address mixtures of speech with music or effects, such as
film or TV soundtracks. Also, we aim at synchronizing at the
phoneme-level, rather than at word or sentence level. Such a
high precision is needed for the potential use of the system in
phoneme-level informed tasks such as the ones mentioned.

Most previous work dealing with mixed signals concern
singing voice recognition and synchronization in music. In
[1, 2] synchronization is performed after a preprocessing step
that segregates the voice signal. The aim is to reduce the ac-
companiment and to locate and extract the vocal part. After a
re-synthesis of the vocal melody, the second step uses more tra-
ditional methods of voice processing (such as cepstral feature
extraction, forced Viterbi alignment and Hidden Markov Mod-
els) to perform the actual alignment. An alternative approach
is to perform synchronization directly on the mixture, without a
previous voice separation stage. The more recent work of Fuji-
hara et al. [3] goes in this direction: they identify the phonemes

directly on the mixed signal by using specific voice and resid-
ual models and an iterative parameter estimation. They adopt a
source-filter model for the voice, and use prior training to create
a collection of spectral envelope templates.

The approach we propose falls into the second category,
namely the synchronization directly on the mixed signal. It is
based on a matrix factorization model proposed by Durrieu et
al. [4] for source separation purposes. In order to segregate the
voice, they use a model of the mixture as the sum of two inde-
pendent sources: the singing voice and the music. For the voice
part, they formulate a source-filter model adapted to a matrix
factorization framework, and for the music part a Non-negative
Matrix Factorization (NMF) model is used. All matrices are
then estimated with an iterative method based on gradient de-
scent. This approach allows the separate treatment of the voice
filter part, which corresponds to the spectral envelope charac-
teristics of phonemes.

We extend that model by introducing a synchronization pa-
rameter matrix into the source-filter part of the model. As such,
errors in synchronization contribute to the overal cost function
to be minimized. Our approach is supervised: a set of phoneme
models are learned from a database of isolated utterances. Apart
from synchronization, we additionally evaluate the system in a
blind phoneme recognition task, without any prior knowledge
of the text. We anticipate that results on blind recognition are
poor: the model is not accurate enough for that task. How-
ever, synchronization results with a given text are encouraging
and are expected to help text-informed audio processing appli-
cations, as well as serving as a basis for word-level or sentence-
level subtitle synchronization. In Sect. 2, we present the pro-
posed synchronization model, and detail the methods used for
learning (Sect. 2.1), recognition (Sect. 2.2) and synchronization
(Sect. 2.3). Finally, Sect. 3 will present the evaluation method,
databases and obtained results.

2. Proposed model
Our model is based on the one proposed by Durrieu et al.
in [4], to which we add a synchronization constraint. The
model is defined in the time-frequency domain in terms of
matrices representing time-varying Power Spectral Densities
(PSDs), defined as the squared magnitude of the Short Time
Fourier Transform (STFT). The observed PSD correspond-
ing to a mixture signal x(t) is thus represented by matrix
X(f, t) = |STFT(f, t){x(t)}|.2 of size F ×T , where F is the
number of frequency bins and T is the number of time frames.
The operator A.b denotes element-wise exponentiation.

We consider having two statistically independent sources:
the speech and the music. Because of their assumed indepen-
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Figure 1: Voice source matrices.

dence (and therefore additivity of powers), the resulting mod-
eled PSD (D) is the addition of both voice PSD (V) and music
PSD (M):

X(f, t) ' D(f, t) = M(f, t) + V(f, t). (1)

The music part is modeled by a generic NMF (the element in-
dices will be henceforth omitted):

M = WMHM , (2)

where WM and HM are respectively the basis matrix or dic-
tionary of spectral bases (of size F × KM ) and the temporal
coefficients or activation matrix (of size KM ×T ), where KM ,
the number of bases in the dictionary, is a parameter to be de-
termined. Under such a general factorization model, the mod-
eled signal is interpreted as a weighted sum of columns of the
dictionary (spectral bases), where the weights are given by the
activation matrix for each time frame. The rows of the activa-
tion matrix describe the temporal evolution of the contribution
of each spectral basis to the observed PSD.

The voice part follows a source-filter model of the form

V = E ◦ F = [WEHE ] ◦ [WF HF S], (3)

where E (for excitation) is the PSD matrix contributed by the
glottal source, F is the PSD matrix contributed by the spectral
envelope filtering of the vocal tract, and the operator ◦ denotes
the Hadamard (element-wise) product. The source and filter
matrices are in turn subjected to a further factorization: WE

and HE are respectively the dictionary and the activation matrix
of the voice source part and WF and HF the dictionary and
the activation of the voice filter part. In the filter part, we have
introduced the square T × T synchronization matrix S, whose
effect will be detailed below.

The source dictionary matrix WE is always known before-
hand and fixed during model optimization. It contains a col-
lection of glottal source harmonic combs for a range of funda-
mental frequencies, as generated by the KLGLOTT model [5]
(see Fig. 1(a)). The source activation matrix HE is initial-
ized with a Gaussian distribution over the f0s, with parameters
set to reflect a typical range of the human voice, and updated
during optimization. At the end of the optimization process, it
should contain the degree of presence of each harmonic comb
(and thus, of each f0), as a function of time. In other words, it
should visualize the melody or, in case of speech, the prosody
(see Fig. 1(b)). The initialization and handling of the filter-part
matrices depend on the desired task (recognition or synchro-
nization), and will be detailed in the following subsections.

The number of components of the source-part factorization
(KE) is fixed and equal to the number of harmonic combs gen-
erated by the glottal model. The number of components of the
filter-part factorization (KF ) is determined by preliminary ex-
periments, as will be explained in Sect. 2.1.

The final model to be optimized is thus given by

D = WMHM + [WEHE ] ◦ [WF HF S]. (4)

Parameter estimation is performed by an iterative gradient
descent method comparing model D and observation X given
a certain cost function

D(X|D) =

FX
f=1

TX
t=1

d([X]ft|[D]ft), (5)

where d(x|y) is a given element-wise distance measure. As
shown in [6] for the case of NMF-based source separation, an
appropriate choice for audio signal processing is the Itakura-
Saito (IS) divergence:

dIS(x|y) =
x

y
− log

x

y
− 1 (6)

due to its property of scale invariance. Furthermore, gradient
descent based on the IS divergence has been shown [6] to be
equivalent to Maximum Likelihood (ML) optimization if the
variables are supposed to be Gaussian and independent, and if
the problem is defined for PSDs instead of STFT amplitudes
(hence the power additivity assumption mentioned above).

2.1. Learning

The phoneme models are learned as follows. First, we cre-
ate sound files containing all concatenated occurrences of each
phoneme in the training database. We subject each concatenated
phoneme file to ML optimization according to the model of Eq.
4. To that end, source matrices WE and HE are initialized as
explained before. The synchronization matrix is not used, so
it is set to an identity matrix: S = I. All other matrices are
updated after being randomly initialized. The parameter vec-
tor (i.e., the set of all matrices allowed to be updated between
iterations) for the learning task is:

θlearn
p =

˘
WMp ,HMp ,HEp ,WFp ,HFp

¯
, (7)

where p is the phoneme index. The remaining component num-
ber parameters KMp and KFp are determined by preliminary
cross-validation tests. Even if the NMF part is supposed to
model the musical accompaniment, which is absent from the
training set, it was found useful to keep an NMF model with
a single component (KMp = 1) in order to model potential
generic noise present in the recordings.

The learned model for phoneme p is the estimated ŴFp

dictionary matrix, which contains spectral envelopes that, when
combined, should correspond to typical spectral envelopes of
that phoneme (the ˆ notation denotes estimation or learning).
For vowels, the combination of the spectral basis should fol-
low the characteristic formant structures. Finally, the final
learned phoneme dictionary is constructed by concatenating
all phoneme-wise dictionaries ŴFp into the learned dictionary
matrix ŴF , with KF = P ·KFp , where P is the total number
of phonemes and KFp is supposed the same for all phonemes.

Learning was based on 13 vowel models and one additional
noise model which corresponds to the aggregate effect of noises



(a) Phoneme envelope dictionary WF . Vertical
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Figure 2: Voice filter matrices.

and consonants, and thus presents a rather flat spectral enve-
lope. Fig. 2(a) shows an example of learned spectral envelope
matrix for P = 8 phonemes and KFp = 11 spectral bases per
phoneme. The 11 rightmost columns of the matrix correspond
to the consonant/noise model.

2.2. Recognition

For recognition, we suppose that the phonemes envelope dic-
tionary is known and fixed, given by the learned matrix ŴF .
However, we do not know the phoneme sequence. Hence, the
activation matrix of the filter part HF , as well as the fundamen-
tal frequency matrix HE , are randomly initialized and blindly
estimated. The same applies to the NMF part. The synchro-
nization matrix is again set to identity: we do not separate the
activations and synchronization matrix, since the sequence of
activations should be fully determined by the HF matrix. The
parameter vector for recognition is thus:

θrecog. = {WM ,HM ,HE ,HF } . (8)

Recognition results are obtained by observing the estimated ma-
trix ĤF . Adding the activations by phonemes and locating the
maximum reveals the most likely phoneme at each frame.

2.3. Synchronization

Like for recognition, the phoneme envelope dictionary ŴF is
known. But now the phoneme sequence is known and given by
the text. This allows to initialize the matrix HF following the
expected phoneme sequence. This is done as follows: we sup-
pose that each phoneme is equally distributed in time along the
duration of each sentence, and we introduce blocks of ones in
the concerned phoneme locations, the rest of the matrix consist-
ing of zeros. We will denote a matrix initialized in this way by
HB

F (B stands for binary). An example of matrix HB
F initial-

ized from the text is shown on Fig. 2(b).
The synchronization matrix S allows to modulate the loca-

tion and duration of the phoneme-wise blocks of the HF matrix.
Its effect is to temporally warp the matrices multiplying it from
the left in order to find the best temporal match between model
and observation. Matrix S is initialized as a band matrix B(W ),
i.e., a matrix with an “enlarged diagonal” filled with ones up
to a distance of W elements from the diagonal, W being the
maximum warping factor permitted. An example of optimized
synchronization matrix is shown in Fig. 2(c).

Algorithm 1 ML update rules for synchronization

1: HE ← HE ◦ WT
E [(WF HF S)◦D.−2◦X]

WT
E

[(WF HF S)◦D.−1]

2: HM ← HM ◦ WT
M (D.−2◦X)

WT
M

D.−1

3: WM ←WM ◦ (D.−2◦X)HT
M

D.−1HT
M

4: S← S ◦ (WF HF )T [D.−2◦X◦(WEHE)]

(WF HF )T (D.−1◦(WEHE))

The parameter vector for the synchronization task is

θsynch. = {WM ,HM ,HE ,S} . (9)

The corresponding update rules are obtained from non-negative
gradient descent (see [6]), and are given for this task in Algo-
rithm 1. It should be noted that in this case we are concurrently
estimating pitch (via HE) and performing synchronization (via
S) under the same optimization process. Table 1 summarizes all
initialization and updating rules for this and the previous tasks.

After optimization, to obtain the synchronization results we
proceed as follows:

1. DTW of Ŝ . Since only one column of HF (one
phoneme) is supposed to be observed at a time, we apply
Dynamic Time Warping (DTW) to Ŝ in order to find the
highest similarity path. Fig. 2(c) shows (superimposed
in black) an example of DTW path found from an es-
timated Ŝ matrix. Note that horizontal segments in the
path correspond to phoneme duration adjustments, and
vertical segments are forbidden, again in order to avoid
mixing several phonemes at a time.

2. Warping of HB
F . Once the DTW path has been found,

the phoneme sequence activation matrix HB
F is tempo-

rally warped by the product

H̃B
F = HB

F ·DTW{Ŝ}. (10)

Finally, the sequence of synchronized phonemes is given by the
non-zero entries for each column of H̃B

F .

3. Evaluation and results
For learning, we use the concatenated occurrences of 13 vowels
(aa, ae, ah, ax, axr, eh, er, ih, ix, iy, uh, uw, ux) from all speak-
ers of the training subset of the TIMIT database [7] (which is



Music Source Filter
Task WM HM WE HE WF HF S

Learning random random KLGLOTT Gauss random random I

Recognition random random KLGLOTT Gauss ŴF random I

Synchronization random random KLGLOTT Gauss ŴF HB
F B(W )

Table 1: Summary of initialization rules. Shaded cells denote matrices being updated during optimization.

task mix ACC PRC RCL F-score

Recognition 0 dB 13 ± 5 8 ± 5 22 ± 14 11 ± 7
10 dB 16 ± 5 9 ± 5 25 ± 14 13 ± 7

Synchro. 0 dB 62 ± 10 35 ± 13 51± 16 41 ± 14
10 dB 66 ± 9 39 ± 14 50 ± 16 43 ± 14

Table 2: Evaluation results (the values are in % ± standard de-
viation across mixes.)

annotated by phonemes), and the concatenation of non-vowel
phonemes for the noise model. For the tests, we use linear mix-
tures of 8 sentences out of the TIMIT test subset (which does
not overlap with the training set) with 9 randomly chosen music
excerpts. We build two test groups: the first contains the voice
mixed at the same average energy level as the music (mixtures
at 0 dB) and the second contains the voice mixed 10 dB above
the music (a more realistic case). This makes a total of 144 test
mixtures containing one sentence each. All the files are monau-
ral and sampled at 16 kHz. For PSD extraction, a Hamming
window of 40 ms with a hop size of 20 ms is used.

For evaluation, we use the traditional criteria from Infor-
mation Retrieval: accuracy, precision, recall and F-score, based
on a frame-by-frame comparison of ground truth and estimated
phonemes. In our case, the relevant outputs (positives) are the
vowels, and the non-relevant outputs (negatives) are the con-
sonant and music frames. Given the number of true positives
(TP: correctly detected vowels), true negatives (TN: correctly
detected consonant or music frames), false positives (FP: conso-
nant and music frames incorrectly labeled as vowels) and false
negatives (FN: vowel frames incorrectly labeled as consonants
or music), accuracy is defined as ACC = TN+TP

TN+TP+FN+FP
,

recall is defined as RCL = TP
TP+FN

, precision as PRC =
TP

TP+FP
, and F-score as F = 2 PRC·RCL

PRC+RCL
. The final quality

judgment should be mainly based on the F-score, since it gives
the best compromise between PRC and RCL. Accuracy is often
misleading: it can be high even if no vowels are detected, since
usually most of the frames in the ground truth contain noise or
non-relevant phonemes.

The results are presented on Table 2. As expected, the re-
sults for the 10 dB mixtures are better than for the the 0 dB mix-
tures. However, performance difference in terms of F-score is
of only 2%, which indicates a good robustness against the back-
ground signal. It also can be seen that blind recognition is not
feasible by this approach, resulting in low F-scores. However,
knowing the text and performing synchronization improves the
F-score by 30%, attaining a best average performance of 43%
F-score and 66% accuracy. A visual example of a good syn-
chronization result is shown in Fig. 3.

4. Conclusions
We have implemented and evaluated phoneme-level synchro-
nization between text and speech mixed with music, under a

Figure 3: Example of phoneme synchronization for a 10 dB
mixture. Different colors denote different phonemes.

matrix factorization ML framework. Synchronization at the
phoneme level reaches an F-score of 43% and an accuracy of
66%. These results suggest that the resulting alignment of
phonemes can help text-informed audio processing tasks. Also,
we deem the performance adequate for the synchronization of
subtitles, since aggregating the phoneme-level results to the
word-level or sentence-level is expected to increase the F-score.

To further increase performances (and to make blind
phoneme recognition feasible), better phoneme models will be
investigated. A possibility is to add temporal models based on
n-grams or Hidden Markov Models. Also, the currently used
noise model is too general and will need to be refined. Finally,
deviations from canonical pronunciations need to be addressed.
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