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ABSTRACT

This paper concerns the adaptation of spectrum dictionaries in audio
source separation with supervised learning. Supposing that samples
of the audio sources to separate are available, a filter adaptation in the
frequency domain is proposed in the context of Non-Negative Ma-
trix Factorization with the Itakura-Saito divergence. The algorithm
is able to retrieve the acoustical filter applied to the sources with a
good accuracy, and demonstrates significantly higher performances
on separation tasks when compared with the non-adaptive model.

Index Terms— audio source separation, dictionary, non-
negative matrix factorization, adaptation

1. INTRODUCTION

Audio source separation is a topic that receives a lot of attention
nowadays. Fully automatic source separation is still out of reach,
but a number of applications involving a human operator are starting
to yield satisfactory results. It is gradually included in software used
by sound engineers, and starts to be used for remixing, remastering,
upmixing and denoising.

Audio source separation is made possible by exploiting various
features that make several sources distinguishable from each other:
spatial diversity, spectral shape characteristics, perceptual grouping
(Computational Auditory Scene Analysis (CASA)-based methods).
When only one channel is available, there is no spatial information
to take into account. As a consequence, the two latter features have
to be exploited.

In this paper, we address audio source separation based on dic-
tionary learning using spectral shape characteristics. We suppose
that there are isolated samples available for some sources involved
in the mixture. While most of the existing dictionary-based meth-
ods rely on the hypothesis that the training samples have to include
samples recorded in similar conditions than in their instantiation on
the mixture, our approach tolerates a difference of equalization be-
tween the learning source and the source in the mixture. The pre-
sented method involves a filter adaptation, which we implemented
in a Non-Negative Matrix Factorization (NMF) framework based on
the Itakura-Saito (IS) divergence [1].

Section 2 will describe the signal model that was chosen. Then,
Section 3 will present the algorithm that performs the source separa-
tion. In Section 4, the experimental settings will be detailed and the
results will be discussed.

2. SIGNAL MODEL

2.1. Framework

In this study, the problem of source separation is formulated in an
NMF framework, with the IS divergence as the metric [1]. More gen-
erally, this work can be ascribed to the variance modeling paradigm
[2]. We address here the case of mono signals.

The input signal s is transformed into the time-frequency do-
main by means of a Short Time Fourier Transform (STFT), yielding
a matrix S. As in [1], the squared modulus of each element is com-
puted to obtain a matrix of variances V. The problem of NMF is to
find the matrices W and H such that

V 'WH. (1)

W and H have dimensions F ×K and K ×N , and it is desirable
that F ×K +K ×N � FN .

The factorization is formulated as the minimization problem

(W,H) = argmin
W,H

DIS(V|WH), (2)

where DIS is a cost function involving the IS divergence dIS :

DIS(V|WH) =

F∑
f=1

N∑
n=1

dIS(V(f,n)|[WH](f,n)). (3)

The IS divergence is defined as:

dIS(x, y) =
x

y
− log

x

y
− 1. (4)

This divergence is a good measure for the perceptual difference
between two signals, which is explained by its scale invariance:
dIS(γx|γy) = dIS(x|y), for a given scalar γ.

The matrix W obtained after an approximation following this
model contains Power Spectral Densities (PSDs) and is commonly
called dictionary, whereas H contains activations of these PSDs
across time. If K is carefully chosen, the PSDs constitute a good
characterization of the audio sources involved in the mixture.

2.2. Fixed dictionary

Fixed dictionaries for source separation have been used in several
previous approaches [3, 4, 5]. In an NMF context, it is possible to
fix a number of the columns of W using prior learning [6]. The
learning consists in performing an NMF on an isolated sample of
the source that is playing. This process gives a dictionary of PSDs



that can be used as a dictionary for the extraction. However, when
the recording conditions of the mixture differ from the ones of the
learning sources, the performance of such an approach is limited.
This problem is addressed here with a filter adaptation strategy.

2.3. Filter on fixed dictionary

Adaptation of a linear filter applied to a dictionary is a relevant fea-
ture for source separation with fixed dictionaries. Indeed, a large
part of the differences between various recording conditions and var-
ious instruments of a given class can be represented by an acoustical
filter. Adapting an acoustical filter for source separation with fixed
dictionaries has been proposed in [7] in the context of Gaussian Mix-
ture modeling (GMM) of source PSDs. A similar approach has been
developed in [8] where filters are learned to model convolutive mix-
tures prior to the estimation of activations H. Here, we investigate
the use of acoustical filter adaptation in an NMF with the IS diver-
gence (IS-NMF) to take into account the acoustical differences be-
tween learning and separation steps for given source signals. In par-
ticular, we will discuss two different ways of learning the dictionary.

In the frequency domain and for a given source i, such a filter
gi multiplies each PSD of a given source, giving the following new
source-wise variance approximation:

Vi ' diag(gi)WiHi, (5)

where diag(gi) is a diagonal matrix with gi as the diagonal vector.
The total variance V = |S|.2 (the .x operator denotes element-

wise power) of the mixture being:

V =

I∑
i=1

Vi ' D =

I∑
i=1

diag(gi)WiHi, (6)

where D is the estimated variance of the signal (sum of all the source
variance models).

Using this formalism for every source in the signal, two different
usage modes can be devised:

• Wi is fixed, in which case the filter gi can be either a free or
a fixed vector with unit components (equivalent to a unit gain,
diag(gi) = I).

• Wi is free, in which case integrating the filter gi is of no use
since it adds a useless frequency indeterminacy.

These models will be illustrated in section 4.

3. ALGORITHM

3.1. Original algorithm for IS-NMF

To solve the IS-NMF factorization, we choose to work with the mul-
tiplicative update algorithm [9]. For a model V 'WH, the update
rules are:

H← H. ∗W
T ((WH).−2. ∗V)

WT (WH).−1
(7)

and

W←W. ∗ ((WH).−2. ∗V)HT

(WH).−1HT
(8)

where .∗ denotes element-wise multiplication, and A
B

denotes
element-wise division. These update rules are iterated until a maxi-
mum number of iterations Nit is reached.

3.2. Algorithm for fixed dictionary and free filter

The proposed algorithm is a multiplicative gradient algorithm. The
update rule for Hi is the following:

Hi ← Hi. ∗
(diag(gi)Wi)

TD.−2. ∗V
(diag(gi)Wi)TD.−1

. (9)

To obtain the update rule for gi, the cost function has to be de-
rived as a function of this variable. Then, the ratio between the pos-
itive part P and the negative part Q of this derivative is computed,
then multiplied by the previous value of gi. This yields:

P (f) =
∑
n

(V(f,n). ∗ [WiHi](f,n)./D
.2
(f,n)) (10)

Q(f) =
∑
n

([WiHi](f,n)./D(f,n)) (11)

gi ← gi. ∗ (P./Q) (12)

where ./ denotes the element-wise division. To avoid scale indeter-
minacies, the filter is normalized to unit energy, the gain information
being stored in H.

Considering several sources than can have an adapted filter or
not, and a free PSD or a fixed learned one, the problem can be solved
with Algorithm 1.

Algorithm 1 IS-NMF with source-specific filter adaptation
Require: V, IsTheFilterToUpdate i ∀i, IsTheDictionaryToUp-

date i ∀i
1: % Initialize the matrices for each source
2: for i = 1 to i = I do
3: initialize the filter gi with ones
4: initialize the PSDs Wi with learning or with random values
5: initialize the activations Hi with random values
6: end for
7: % Perform the factorization
8: for nit = 1 to nit = Nit do
9: for i = 1 to i = I do

10: if IsTheFilterToUpdate i then
11: gi ← gi. ∗

∑
t(V.∗(WiHi)./D

.2∑
t(WiHi./D))

12: end if
13: if IsTheDictionaryToUpdate i then
14: Wi ←Wi. ∗ (D.−2.∗V)HT

i

D.−1HT
i

% here diag(gi) = I

15: end if
16: Hi ← Hi. ∗ (diag(gi)Wi)

TD.−2.∗V
(diag(gi)Wi)TD.−1

17: end for
18: end for
19: return gi,Wi,Hi

3.3. Learning

As stated in the previous section, the learning step can be done with
several methods. In this study, we investigate two ways of learning
a dictionary: one consists in performing an IS-NMF factorization
with a free W (see Sect. 3.1) while the other is based on a K-means
algorithm. The K-means algorithm performs a vector quantization
of the squared modulus of the STFT of an input signal. It can be
parameterized by K, the number of PSDs that will be kept and stored
in the Wi matrix for each source. For consistency, the LBG K-
means method [10] is used, since it relies on the IS divergence.



3.4. Separation

Once each model of the source is computed, Wiener masks Mi are
computed and applied to the mixture spectrogram S to obtain the
source-specific spectrograms Si:

Si = Mi. ∗ S = (diag(gi)WiHi)./D. ∗ S. (13)

The temporal signals si of each source are then computed by
performing an overlap-add operation from Si.

4. EXPERIMENTS

This section presents the results obtained with the proposed system.
We first validate the signal model with synthetic data, then we show
results on real musical instruments. All measurements were obtained
with the BSS EVAL toolbox [11]. Separation sound examples are
available online1.

4.1. Validation

The goal of this step is to validate the filter which is estimated thanks
to the update rule (8). Our synthetic database is composed of two
pieces of music with original separated tracks. Beforehand, one of
the tracks of each piece has been filtered with different types of de-
signed filters (a multi-notch filter and a high-pass one), then mixed
with its accompaniment made of all other separated tracks. The test
aims at isolating the filtered track from the accompaniment thanks to
two source models:

• one for the filtered track, which consists of a fixed dictionary
previously learned from the non-filtered corresponding track
and a filter to be estimated,

• another for the rest of the mix, which consists of a fixed dic-
tionary learned from the original accompaniment track and
without filter. In these experiments, the number of compo-
nents for the accompaniment model is fixed to K = 45.

Once the separation is computed, the estimated filter can be
compared to the initially designed filter. For instance, Figure 1
shows the multi-notch filter estimated with a prior dictionary learned
with the IS-NMF method. Most of the frequencies are correctly es-
timated, except in low frequencies where a lack of data causes a
mis-estimation.

All experiments have been realized with different numbers of
components K for the filtered source. Table 1 gives the best results
obtained with the specified value of K. These results highlight that
the IS-NMF learning method always reaches better SDR (Signal To
Distortion Rate), SIR (Signal to Interference Rate) and SAR (Signal
to Artifact Rate) than the K-means one. Furthermore, concerning
experiments with IS-NMF learning, the filter estimation always im-
proves the separation quality (up to 6.9 dB) whereas with K-means
learning, the improvement is lower and not systematic.

4.2. Real tests

We choose two different classes of instruments to test our approach:
two polyphonic instruments, piano and guitar, and one monophonic
instrument, bass2. The tracks come from real multi-track record-
ings, so the instruments are expected to play in synchrony and in
harmony. Let us note S = {piano, guitar, bass} the set of sources

1http://research.audionamix.com/ssd icassp2011
2Bass can be polyphonic but we only address its monophonic usage here.
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Fig. 1. Example of an estimated filter with IS-NMF-based learning

Filter Method SDR SIR SAR
SOURCE 1 : Filtered drums / SOURCE 2 : Guitar

Multi-notch
NMF (K=20) w/o filter 6.6 16.4 7.2

w filter 12.9 27.5 13.1

K-means (K=10) w/o filter -4.1 -2.3 5.0
w filter 7.1 12.9 8.6

High-pass
NMF (K=20) w/o filter 5.8 12.9 6.9

w filter 12.7 26.7 12.9

K-means (K=10) w/o filter -6.6 -4.2 2.7
w filter 7.0 13.4 8.4

SOURCE 1 : Filtered strings / SOURCE 2 : Guitar and drums

Multi-notch
NMF (K=10) w/o filter 2.3 9.7 3.6

w filter 3.3 11.4 4.3

K-means (K=5) w/o filter -3.5 1.7 0.4
w filter -8.4 -6.3 3.1

High-pass
NMF (K=10) w/o filter 0.1 6.6 2.0

w filter 6.1 16.0 6.6

K-means (K=5) w/o filter -13.0 -10.7 1.9
w filter -8.4 -4.5 -0.4

Table 1. Results of separation of a filtered source from its accompa-
niment

to be studied. The training signal for each source of S is built from
samples of the RWC database [12], and consists of a concatenation
of all the whole range of notes of one single instrument per source.
The test data is taken from a recording from which the separated
tracks have been made available. For each source of S, we generate
a two-source mono mixture which contains the source to separate
and another available source (drums). This leads to three different
tests :

1. Piano test. Source 1 : piano, source 2 : drums.

2. Guitar test. Source 1 : guitar, source 2 : drums.

3. Bass test. Source 1 : bass, source 2 : drums.

For each test, the learning stage is done on the source-specific train-
ing signal for source 1 (W1 is fixed). Source 2 is modeled with free
PSD components (W2 is updated). Each mixture is 10 s long.

4.2.1. Influence of the learning method

Again, two strategies have been studied for the learning of source-
specific dictionaries W1, the LBG K-means one and the IS-NMF
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Fig. 2. Evaluation of the two learning methods: IS-NMF and LBG
K-means

Experiment learning SDR SIR SAR

piano w filter K-means (K=5) 9.72 11.38 15.12
w/o filter NMF (K=100) -0.08 4.42 3.16

guitar w filter NMF (K=40) 12.37 13.74 18.21
w/o filter NMF (K=60) 10.75 13.02 14.89

bass w filter NMF (K=10) 11.70 12.76 18.59
w/o filter NMF (K=60) 9.17 11.62 13.11

Table 2. Best separation results (in dB) for each experiment

one. For both methods, we vary the number of components, K.
For each source of S, we have compared the performance of each
learning method in the context of IS-NMF with source-specific filter
adaptation. The SDR, SIR and SAR measurements as a function of
K have been computed for each experiment. For the three criteria,
and for each source of S, IS-NMF-based learning seems to better
fit our model in most cases. It is illustrated in Figure 2, where the
SDR criterion is presented. Note that for small values of K, the two
methods give similar results, K-means being more efficient in the
case of the piano, for example.

4.2.2. Influence of the filter adaptation

The influence of our approach is studied by comparing the results
with and without filter adaptation. A Hamming window of 85 ms
with an overlap factor of 75% is used to compute the STFT of the
mixtures. The number of points is 4096 with a sampling rate of
44.1 kHz. The secondary source is set at K = 45 components.
The results are given in Table 2. For each experiment, the learning
condition (method and number of components used) which gave the
best SDR is indicated and the corresponding SDR, SIR and SAR
are shown. Source separation performance is always better when
adaptation is performed, with an average gain of 4.9 dB over all ex-
periments and for all criteria. This motivates the use of IS-NMF with
source-specific filter adaptation for the three types of sources. An in-
teresting feature of this adaptation is that fewer PSD components are
required to decompose a given source adequately. For guitar, only
40 components are necessary to achieve the best separation when an
adaptive filter is used, compared to 60 fixed ones, and for bass it is
10 compared to 60. An adapted-filtered dictionary can be both more

flexible and more compact than a fixed dictionary.

5. CONCLUSION

In this paper, a filter adaptation of fixed dictionaries in an IS-NMF
framework has been proposed. We demonstrated that this adaptation
improves the separation quality over the fixed dictionary approach.
Future work will consist in deriving smoothing strategies for the fil-
ters, in order to prevent them to take inconsistent values for some
frequencies. This can occur when there is a lack of data for a given
frequency to reliably estimate the filter, and this can lead to local
separation artifacts.
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