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ABSTRACT

Moving music indexing technologies developed in a re-
search lab to their integration and use in the context of
a third-party search and navigation engine that indexes
music files, archives of TV music programs and video-
clips, involves a set of choices and works that we re-
late here. First one has to choose technologies that per-
form well, which are scalable (in terms of computation
time of extraction and item comparison for search-by-
similarity), and which are not sensitive to media quality
(being able to process equally music files or audio tracks
from video archives). These technologies must be applied
to estimate tags chosen to be understandable and useful for
users (the specific genre and mood tags or other content-
descriptions). For training the related technologies, rele-
vant and reliable annotated corpus must be created. For
using them, relevant user-scenarios must be created and
friendly Graphical User-Interface designed. In this paper,
we share the experience we had in a recent project on inte-
grating six state-of-the-art music-indexing technologies in
a multimedia search and navigation prototype.

1. INTRODUCTION

The objective of the MSSE project (Multimedia Search
Services for European Portals) is to develop a multimedia
search and navigation prototype, which gives access to sev-
eral types of contents (catch-up TV, archives, videos, mu-
sic) and which illustrates the benefits of advanced audio-
video analysis technologies. The prototype is organized
around three use-cases:

• Searching recently broadcasted TV programs
(“Catch-up TV”); navigating inside the videos by
chapters or keywords.
• Searching video extracts on a specific topic related

to recent news and culture; browsing in relevant
translated foreign videos and in public TV archives.
• Searching and exploring music pieces with the help

of tags, music structure, summaries and similarity.
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The prototype is based on video indexing, speech recog-
nition and music indexing technologies. In this paper, we
describe the works performed for the music indexing tech-
nologies. Those have to deal with three types of content:

• A music collection
• A collection of video clips from the W9 TV channel
• A collection of video archives of music programs

from the INA 1 collection. (only the audio track of
the video is processed by our indexing modules).

In this paper, we propose to review the technologies
integrated into this search and navigation prototype, why
they were chosen and how they were developed and inte-
grated as well as the corresponding user-evaluations and
GUI developed. We believe that sharing the experience of
this work could provide a good example of integration of
research modules in a real application scenario.

While many papers have been published on the inde-
pendent elements this paper deals with (content-based, se-
mantic tags, corpus creation, GUI, user-tests), few of them
deal with all these elements as a whole to create a sys-
tem. Among exceptions are the works made for the Mu-
sic Browser [1], FM4-Soundpark [2], Musicream [3], Mu-
sicBox [4] or PlaySOM [5]. Our work differs from the
previous in the number of integrated technologies, the in-
tegration into a whole video and music search engine ac-
cessible through a web-browser and the simplicity of the
GUI.

2. OVERALL DESIGN PROCESS

Figure 1 represents the various elements of work (and in-
teraction/dependency between them), needed for integrat-
ing the music technologies in the prototype.

The starting point is a set of requirements from the
third-party developer and its users 2 −in terms of func-
tionalities (such as searching-by/ filtering-by tags, search-
by-similarity or summarization) and −in terms of types of
content-description (genre, mood, instrumentation).

From this, a set of potential technologies are studied in
terms of performances and scalability 3 . Candidate tech-
nologies are tested over the years in internal benchmark-
ing or in public ones such as MIREX. For example, from

1 French National Audio Visual Archiving Institution
2 During the project, 1 or 2 user tests per year were performed, each

corresponding to a new version of the prototype (see part 6).
3 By scalability we mean computation time of content-extraction and

of items comparison for search-by-similarity.
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Figure 1. Interaction/dependency between the various el-
ements of work needed integrating music technologies.

our tests in MIREX between 2008-2011, it appears that us-
ing Universal Background Model (UBM) to model audio
features [6] has many advantages over other techniques:
it achieves performances among the best for both auto-
tagging [7] and similarity tasks [8]; it allows to share the
same front-end for both tasks; it allows easy scalability in
the case of similarity (items comparison remains in an Eu-
clidean space). Therefore, we chose UBM for these tasks.

In parallel, the design of the GUI starts. Since the GUI
directly infers on the usability of the functionalities, its de-
sign is mainly driven by those. It is also driven by the
outputs of user-tests and by extra outputs that technologies
can provide without extra-costs. For example, when com-
puting audio summaries, music structures are estimated as
an internal step. Therefore, it can easily be integrated to
provide new functionalities (display interactive player).

In a latter stage, annotated corpora need to be created
for each of the requested content description (genre, mood,
instrumentation). This part forms a close feedback loop
between: − annotation of a corpus, − measuring the re-
liability of the annotations (this can highlight the fact that
some required concepts may appear unclear), − redefin-
ing the types of content with the third-party. After sev-
eral iterations, this loop-process leads to a much clearer
set of content-description concepts (the specific definition
of genre, mood, instrumentation) and more accurate anno-
tated corpora (their specific use for music tracks).

These annotated corpora are then used to the train the
corresponding technologies and optimization is performed
to reduce computation time, disk access and memory load.

The resulting prototype is then submitted to global user
tests (testing both functionalities, the GUI and the underly-
ing technologies to achieve the functionalities). The whole
process is then started again (once a year in our project).

3. TECHNOLOGIES INTEGRATED

Resulting from the process explained in part 2, six different
music-content-based technologies have been selected:

• auto-tagging based on training (for genre, mood, in-
strumentation tags and singing segmentation),

• two technologies for auto-tagging based on dedi-
cated models (for tempo and key/mode tags),

• search by similarity (for music recommendation),
• music structure (for interactive browsing),
• audio summary creation (for content preview).

These modules are either applied to mp3 files or to the au-
dio part of video archives or clips. The inter-connections
between the various modules are indicated in Figure 2. It
should be noted that the first five technologies were evalu-
ated very positively in the recent MIREX-11 evaluations.

3.1 Audio feature extraction

In order to decrease the total computation time, auto-
tagging based on training and search-by-similarity are
based on the same audio features front-end. The audio fea-
tures front-end is described in Figure 2 and corresponds to
the proposals made in [8], [7] or [9]. It is based on two
modeling techniques coming from speech processing:
• Universal Background Model (UBM) [6] [10]. The

aim of this technique is to represent the “world” of fea-
tures using a GMM and then deform 4 this “world” to rep-
resent a new feature vector. The resulting representation is
the concatenation of the adapted µ-vectors of the GMM,
the size of which depends on the dimensionality D of the
initial feature vectors and the number m of mixtures used
for the GMM. These concatenated-vectors are denoted by
“Super-Vectors” (SV) in the following.
• Multivariate Auto-Regressive Model (MAR) [11].

As for the mono-dimensional AR-model, the goal is to rep-
resent the dependency of the values of a signal over time
by an all-pole filter of order K 5 . In the case of the MAR,
we consider the dependencies in time and between the var-
ious D dimensions of the feature vectors. The results of
this is a matrix of coefficients α

k,d
.

The input to these two modeling techniques is a fea-
ture set made of 13 Mel Frequency Cepstral Coefficients
and 4 Spectral Flatness Measure coefficients, extracted us-
ing a 40 ms Blackman window with a 20ms hop size.
From those, two modeled feature sets are computed:
(1) Super-Vector of MFCC/SFM, which we denote by
SV(mfcc/sfm), (2) MAR of MFCC/SFM, which we denote
by MAR(mfcc/sfm). The two modelings are performed us-
ing − either the whole set of features inside a track (in
case of search-by-similarity and global auto-tagging) − or
the set of feature inside successive windows of 2s duration
(in case of segmentation, such as singing voice location).
In each case, the UBM has been previously trained on a
representative database. This training is the most time-
consuming part but needs only to be performed once. The
UBM configuration is a set of m = 64 (for search-by-
similarity) or m = 32 (for auto-tagging) mixtures, each
with a diagonal covariance matrix. The order of the MAR
model is K = 4.

4 Deforming means here adapting the µ-vectors of the GMM using an
Expectation Maximization algorithm.

5 s(n) =
∑K

k=1 αks(n− k)+ ε where s is a signal, n discrete time,
ε a residual.
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Figure 2. Modules used for music content extraction.

Auto-tagging based on training
Categories Configuration Tags
Genre single-label Classical, Other Genres, NA
Other Genres multi label Pop/Rock, Blues, Elec-

tronica, Metal/Punk,
Reggae, Jazz, Rap,
Soul/Funk, Rhythm &
Blues, Latin/Bossa

Mood single label Happy, Sad, NA
single label Dynamic, Calm, NA
single label Romantic, NA

Instrumenta-
tion

multi label Brass, String, Piano, Elec-
tronic, Acoustic

Drum Kit single label No drum, Electronic,
Pop/Rock, Hard/Metal

Guitar single label No guitar, Acoustic Guitar,
Electric Guitar

Live Studio segmentation
+ single label

Live, Studio

Singing segmentation Singing voice

Table 1. Categories, configurations and tags of the various
classifiers used for the Auto-tagging modules

3.2 Search by similarity

As explained in [8], the main goal of using UBM and
MAR for modeling the features (instead of the usual
MFCC/GMM with EMD Kullback-Leibler divergence) is
to remain in an Euclidean space. In the case of search
by similarity, it therefore allows the use of standard tech-
niques to decrease the search time in the database. In order
to avoid hubs and orphans, various techniques have also
been proposed. We have used the UCS-norm (UBM Cen-
tered Spherical normalization) and the MCS-norm (Mean
Centered Spherical) proposed in [8]. Both techniques con-
sist in projecting the features vector on a unit sphere (ei-
ther centered on the mean of the UBM, or the mean of
the database). After this, each track of the database sees
the rest of the database with the same point of view (unit
sphere). Using those, the similarity between two tracks is
simply the correlation of their vectors. Two similarity ma-
trices, corresponding to the two feature sets are then com-
puted and combined linearly (late-fusion).

3.3 Auto-tagging based on training

Auto-tagging based on training aims at providing the tags
indicated in Table 1. Tags can be exclusive (such as “dy-
namic” and “calm”) or inclusive (“pop/rock” and “elec-
tronica”). In our system, all problems are solved using
multi-label classifiers in a one-against-all strategy (true
versus false class). For this, all problems are decomposed
as set of binary SVM classifiers (with an RBF-kernel, σ=1)
[12] [7]. The input to the classifiers is the concatenation of
SV(mfcc/sfm) and MAR(mfcc/sfm) (early fusion).

Global Classifiers: Music genre classifier is a set of
11 binary classifiers (one for each genre) trained and eval-
uated independently. A given track t is said to belong to
a tag-class c if the affinity-output ac(t) of the correspond-
ing SVM classifier is above a threshold Ac. The estima-
tion of each threshold Ac is based on the Recall/Precision
curve obtained on a training set. Considering that the es-
timated tags are to be used as search criteria, it was de-
cided to favor Precision over Recall: we chose the lowest
Ac leading to a Precision greater than 0.8. In terms of us-
ability, we also decided to make “classical music” mutu-
ally exclusive to the “other genres” (see Table 1). For a
given track t, if both aclass(t) and several aother(t) are
above their respective threshold, the choice is based on
the maximum between aclass(t) and max(aother(t)). In
case max(aother(t)) is selected, the corresponding sub-
genres above their respective thresholds are returned. The
same process is applied for the 5 mood classifiers. In this
case, the mutually exclusive classes are “happy” / “sad”
and “calm” / “dynamic”. The auto-tagging module also re-
turns three view-points related to the instrumentation of
the track: (1) a global instrumentation based on dominant
instruments (brass, string, piano, electronic instruments,
acoustic instruments), (2) a detailed description of the per-
cussive part (electronic drum, pop/rock drum, hard/metal
drum) (3) a detailed description of the guitar part (acoustic
guitar, electric guitar).

Segmentation: The segmentation is obtained by detect-
ing class-changes over time. For this, the same system as
presented above is used, but the UBM/MAR models are
applied to the set of features inside a succession of win-
dows of 2s duration (hop size of 1s). Each 2s features is
then classified using SVM classifiers. This segmentation
is used to provide singing/non-singing segmentation over
time. In order to avoid spurious class transitions over time,
a 3rd-order median filter is applied to the estimated classes
over time before segmentation. This segmentation is to be
used to display singing segments in the interface.
We also use this segmentation to perform the “live/studio”
auto-tagging. In our case, “live” is defined as the pres-
ence of “applauses, whistling . . . ” of audience in a bar,
concert-hall, stadium. Since those do not occur over the
whole time-duration of the track (usually at the beginning,
ending or during a break), the decision is based on frame-
classification. We use a minimum threshold of 26s frames
being classified as “live” for the track to be classified as
“live”. A similar approach has been used in [13].

Each tag has also an associated “reliability” defined in
the interval [0, 1] (low/high reliability). For this, the affin-



ity of each SVM is passed through a sigmoid and centered
on its respective threshold. This reliability is to be used by
the GUI for sorting the list of results.

3.4 Auto-tagging based on dedicated algorithms

For each track, we also estimate its global tempo in beats-
per-minute. Note that this estimation does not rely on the
set of UBM/MAR features but on a dedicated algorithm.
We have used the algorithm proposed in [14]. We also as-
sign a “reliability” to this estimated tempo. For this we
used the “periodicity” features proposed by [15] (measure-
ments of the amount of periodicity in the track).

We also estimate the global (most dominant over time)
key/mode among a set of 24 key/mode classes (C Maj, C
min . . . B Maj, B min). We have used the algorithm pro-
posed in [16]. The “reliability” of the output is here es-
timated as the distance between the most-likely key/mode
and the second most likely.

3.5 Music Structure and Summary

This module aims at providing two functionalities: (1) to
display a map of the temporal organization of the track
(music structure) which allows user to interact with it (skip
forward/backward by parts) [17], (2) to provide a meaning-
ful preview of the track content (music audio summary).
The estimation of the music structure and of the audio
summary are based on the same front-end. This front-
end combines the three similarity matrices corresponding
to MFCC, Spectral-Contrast and Spectral-Valley [18] mea-
sures and Chroma/Pitch-Class-Profile (see [19] for details).

Music Structure Estimation: For robustness reasons,
the structure is estimated using a “state” approach. For
this, a segmentation of the similarity matrix is first per-
formed using a “checker-board” kernel [20]. The segments
obtained are then grouped using a constrained hierarchical
agglomerative clustering. The distance used for this clus-
tering is a linear combination of− the distance between the
average values inside the two segments (centroid linkage)
− the smallest possible distance between one of the diago-
nals they may contain (sequence approach) − a constraint
to minimize the departure of the duration of the merged
segments from the average segment durations.

Music Audio Summary Generation: The technique
used for the summary creation is based on an extension of
the summary score of [21]. In this extension, the method
of [21] is iteratively applied to the combined matrix of
[19]. At each iteration, the two time corridors in the self-
similarity-matrix corresponding to the previously chosen
audio extract are canceled to avoid further re-uses. To gen-
erate the final audio signal, the selected segments are con-
catenated using a Downbeat Synchronous OverLap-Add
(DSOLA) techniques.

4. ANNOTATED CORPORA FOR TRAINING

4.1 Corpus creation for the UBM training

Since both auto-tagging and search-by-similarity modules
rely on Super-Vectors, the corresponding UBM needs to

be trained in advance. The training of which needs to take
into account the various types of contents (various genres
and various audio qualities) that the system will need to
deal with. For this, a large database of audio files has been
used: including clean mp3 files at various bit-rates and au-
dio tracks of TV archives.

4.2 Annotated corpora for the auto-tagging problems

For the auto-tagging modules, statistical models (SVMs
and related thresholds) need to be trained for each tag
(genre, mood, instrumentation, singing, live). We explain
here the data used for the training. For the creation of the
list of genres, several attempts have been made: − from
a purely acoustic definition of genres (pop-rock synthed,
poprock hard, electronica ambient, electronica beat . . . )
which guarantees a close proximity to content-based es-
timation algorithms but may be difficult to understand by
users − to a purely application oriented definition. The fi-
nal list indicated in Table 1 is the results of a feedback-loop
between the two. The training-set has then been obtained
by selecting tracks among a large music collection consid-
ered as prototypical of the chosen genres. By prototypi-
cal, we mean tracks representative of the exact genre and
not cross-over between several genres. For the other tags
(mood, instrumentation), 4000 tracks have been manu-
ally annotated by two individual professional annotators.
Only labels for which the annotators agreed on the ma-
jority of the tracks are considered. For these labels, only
tracks for which both annotators agreed have been selected
for the training. This process lead to the five moods and
three view-points on instrumentation indicated in Table 1.
“Live” classifier has been trained on a dedicated training-
set made of the concatenation of all possible audience
noise derived from real recording. The singing segment
classifier has been trained using the Jamendo corpus [22].

5. GRAPHICAL USER INTERFACE

The GUI is the central element that allows user to interact
with the prototype and to test the proposed use-cases. Its
design is crucial since a bad GUI can hinder a good tech-
nology or a good use-case. Its design must follow a close
user-feedback loop (see part 6). The current GUI (see Fig-
ure 3) is organized in three main panels: the interactive-
player (top), the current play-list (left), the various tag-
clouds (right).

The player panel displays the classical editorial meta-
data (track-title, artist-name, album-title) and the cover. A
large horizontal time-line displays the estimated structure
of the tracks. In this, parts with similar content are in-
dicated by rectangle with similar colors. The user can
browse through parts by directly clicking on the corre-
sponding colored rectangle. The time-line also indicates
the segments used for the audio summary by highlighting
the corresponding parts (independently of the color). Once
selected (using the play-list panel), a track automatically
starts playing in the player either in full-duration or in au-
dio summary mode. This choice is based on user prefer-
ences. A search-by-text panel is placed on the top of the
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Figure 3. GUI of the Music Interface of the prototype

interface. It allows either full-database search or search
over restricted criteria (title, artist, album).

The play-list panel indicates the currently selected
tracks which correspond either to− the results of a search-
by-text, a search/filtering using the tag-clouds or a search-
by-similarity,− or a previously stored play-list 6 . For each
track, the estimated tags (genre, mood, instrumentation)
are also indicated. The musical note icon next to each track
allows performing search-by-similarity.

The tag clouds panel indicates the various viewpoints
on the content: genre, mood, and instrumentation. The
tags that are currently active in the filtering are indicated
by highlighted colors. Next to each tag-name is indicated
the number of corresponding items. It should be noted that
the tags inside a cloud are not mutually exclusive.

6. USER TESTS

We define user experience as “the combination between the
quality of the technology, the functionality based on it and
the way to present it on Human Machine Interface”. Dur-
ing the project, 1 or 2 user tests per year were performed,
each corresponding to a new version of the prototype.

Many of the outputs of user-tests relate to the usability
of the GUI: naming of the fields, their spatial organization,
layout of the tag-clouds . . . This is of course essential; es-
pecially considering that the music search part is only one
part of the whole search engine (which also includes TV
and Web-Video search) and the presentation of the various
search engines must be as much as possible homogeneous.
User-tests are performed using two methods.

6 The playlist, tempo and key/mode functionalities are not discussed
here since their are currently subject to modifications of the GUI.

6.1 Qualitative tests

The first method consists in performing qualitative tests.
Qualitative tests have three focuses: (1) to asses the us-
ability of HMI (2) to asses users’ judgment of functional-
ities (3) to imagine with users new use cases and maybe
new functionalities based on the music technology. For
this, users were asked to perform various scenario: “use
the search engine to create a music play list of a specific
mood”, “to discover new music” . . . This is followed by in-
terviews, which allows highlighting problem in the usabil-
ity of the GUI, collecting judgments of functionalities (au-
dio summary, genre, mood and similarity are found highly
relevant while music structure displaying less relevant).
This has also allowed highlighting missing functionalities.
Displaying singing segments was one of those.

6.2 Quantitative tests: the case of audio summary

The second method consists in performing quantitative
tests to compare several variations of a technology. An
example of this are the ”audio summary” user-tests.

For the creation of the summary, a set of user tests have
been performed in order to select the best summary strat-
egy. For this we have compared four different types of
summary: −a 30s extract at the beginning of the file, −a
random 30s extract, −the most representative 30s extract
(denoted by 1x30), −a downbeat-synchronous concatena-
tion of the three most representative 10s extracts (denoted
by 3x10) [17]. 24 users had to listen to tracks of music
they knew (7 tracks) and music they didn’t know (6 tracks).
Half of the songs were in their native language (French),
the other half in English. They were then asked the ques-
tions - “which technique better summarized the track” (for
music they knew), - “which technique is the most informa-
tive of its content” (for music they didn’t know). In both
cases, the 3x10 summary was judged better.

A quantitative evaluation has also been performed to
compare the 1x30 and 3x10 summary. Over a 160-tracks
database, we have measured the number of tracks for
which each technique allowed to include the track title in
the summary (the track title is considered here as the most
memorable part of the track). The 3x10 summary achieved
95% correct location, while the 1x30 achieved 90%.

A user evaluation of the acoustical quality of the multi-
parts (3x10) summary has also been performed. We have
compared four configurations of the audio construction:
−complete DSOLA −partial DSOLA (the loudness of the
audio decreases during the transitions between parts to
highlight them), −DSOLA with sound insertion (a proto-
typical sound is introduced at each transition to highlight
them), −partial DSOLA with visual feedback. This exper-
iment highlighted the fact that in some cases (especially
Rap music), the complete DSOLA leads to an audio that
sounds exactly like a real track. However, users prefer to
feel a separation between the three 10-second parts to avoid
having the feeling of listening to a new mix from a DJ. We
also decided to add a visual presentation to increase the
understanding of this summary functionality. This visual
presentation consists in 3 highlighted segments of the com-



plete music timeline corresponding to the three 10-second
parts of the summary. The play cursor “jumps” from part
to part. With these choices and modifications, user experi-
ence of the summary was improved.

7. INTEGRATION

The back-office of the prototype is based on a Service Ori-
ented Architecture (SOA). This kind of architecture is flex-
ible and particularly adapted for the integration of numer-
ous and distant technologies. The main elements of this ar-
chitecture are: −Metadata collectors, which collect meta-
data coming from content providers (TV Programs, INA
archives, Web videos, music); −Technological modules,
accessible as Web services (e.g. speech to text, named
entities extraction, music analysis); −An XML transverse
metadata base, which stores all metadata coming from col-
lectors and technological modules; −An ESB (Enterprise
Service Bus), which connects the metadata collectors, the
technological modules and the metadata base; −A specific
XML “pivot” format for all metadata manipulated by the
ESB and the XML database. The search engine indexes
are fed by the XML database through a metadata exporter.
The search engine is directly connected to the application.

8. CONCLUSION

In this paper, we wanted to share our experience on inte-
grating music-content indexing technologies, as developed
in a research lab, into a third-part search and navigation
engine. For this, we provided a panorama of the various
elements of works implied and how they interact.

The lessons we learned from this experience is that
this integration involves much more than good signal pro-
cessing and machine learning technologies, which are of
course essential. A side from the technical constraints (ro-
bustness, scalability), many of the works to be performed
relate to make these technologies usable. This involves
first proposing useful and understandable tags for users
and creating the related annotated corpus to train the algo-
rithms. This also involves tuning and modifying technolo-
gies: to favor precision over recall; or to provide reliability
for all estimations (which is difficult for descriptions such
as tempo or key). User tests allows to highlight new chal-
lenges, such as the need for a list containing only the simi-
lar items and not just a ranked-list from the most to the less
similar items; or the fact that some innovative technologies
may be found too specialized for users (music structure).
We hope the information provided here would help the re-
search community when trying to move from research ap-
plications to third-party applications.
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